Fractional Schrodinger dynamics and decoherence

被引:38
作者
Kirkpatrick, Kay [1 ]
Zhang, Yanzhi [2 ]
机构
[1] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Fractional Schrodinger equation; Fourier pseudo-spectral method; Center of mass; Fractional momentum; Decoherence; SOLITON DYNAMICS; WAVE TURBULENCE; WELL-POSEDNESS; EQUATION; APPROXIMATION; EFFICIENT; STATES; LIMIT; MASS;
D O I
10.1016/j.physd.2016.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of the Schrodinger equation with a fractional Laplacian (-Delta)(alpha), and the decoherence of the solution is observed. Analytically, we obtain equations of motion for the expected position and momentum in the fractional Schodinger equation, equations that are the fractional counterpart of the well-known Newtonian equations of motion for the standard (alpha = 1) Schrodinger equation. Numerically, we propose an explicit, effective numerical method for solving the time dependent fractional nonlinear Schrodinger equation-a method that has high order spatial accuracy, requires little memory, and has low computational cost. We apply our method to study the dynamics of fractional Schrodinger equation and find that the nonlocal interactions from the fractional Laplacian introduce decoherence into the solution. The local nonlinear interactions can however reduce or delay the emergence of decoherence. Moreover, we find that the solution of the standard NLS behaves more like a particle, but the solution of the fractional NLS behaves more like a wave with interference effects. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 54
页数:14
相关论文
共 51 条
[1]   Collocation method for fractional quantum mechanics [J].
Amore, Paolo ;
Fernandez, Francisco M. ;
Hofmann, Christoph P. ;
Saenz, Ricardo A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[2]  
[Anonymous], 2006, THEORY APPL DIFFEREN
[3]   A SIMPLE AND EFFICIENT NUMERICAL METHOD FOR COMPUTING THE DYNAMICS OF ROTATING BOSE-EINSTEIN CONDENSATES VIA ROTATING LAGRANGIAN COORDINATES [J].
Bao, Weizhu ;
Marahrens, Daniel ;
Tang, Qinglin ;
Zhang, Yanzhi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2671-A2695
[4]   Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation [J].
Bao, WZ ;
Du, Q ;
Zhang, YZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :758-786
[5]   The nonlinear Schroedinger equation: Solitons dynamics [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) :3312-3341
[6]   Local solvability and turning for the inhomogeneous Muskat problem [J].
Berselli, Luigi C. ;
Cordoba, Diego ;
Granero-Belinchon, Rafael .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (02) :175-213
[7]  
Bronski JC, 2000, MATH RES LETT, V7, P329
[8]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[9]   Dispersive wave turbulence in one dimension [J].
Cai, D ;
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
PHYSICA D, 2001, 152 :551-572
[10]  
CALIARI M., 2010, ELECT J DIFFERENTIAL, V89, P1