Modeling dust and soluble iron deposition to the South Atlantic Ocean

被引:63
|
作者
Johnson, Matthew S. [9 ]
Meskhidze, Nicholas [9 ]
Solmon, Fabien [4 ]
Gasso, Santiago [5 ]
Chuang, Patrick Y. [2 ]
Gaiero, Diego M. [3 ]
Yantosca, Robert M. [1 ]
Wu, Shiliang [6 ,7 ]
Wang, Yuxuan [8 ]
Carouge, Claire [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA
[3] Univ Nacl Cordoba, FCEFyN, CIGeS, RA-5000 Cordoba, Argentina
[4] UPS, Lab Aerol, CNRS, Toulouse, France
[5] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[6] Michigan Technol Univ, Atmospher Sci Program, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA
[7] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA
[8] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China
[9] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
AEROSOL OPTICAL DEPTH; MINERAL DUST; SULFUR-DIOXIDE; PHYTOPLANKTON BLOOM; ATMOSPHERIC IRON; SAHARAN DUST; DESERT DUST; DISSOLUTION; TRANSPORT; ACID;
D O I
10.1029/2009JD013311
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Atmospheric Transport of North African Dust-Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron Transport to the Equatorial North Atlantic Ocean
    Barkley, Anne E.
    Olson, Nicole E.
    Prospero, Joseph M.
    Gatineau, Alexandre
    Panechou, Kathy
    Maynard, Nancy G.
    Blackwelder, Patricia
    China, Swarup
    Ault, Andrew P.
    Gaston, Cassandra J.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (05)
  • [42] EOLIAN DUST ALONG EASTERN MARGINS OF ATLANTIC OCEAN
    CHESTER, R
    GRIFFIN, JJ
    ELDERFIE.H
    JOHNSON, LR
    PADGHAM, RC
    MARINE GEOLOGY, 1972, 13 (02) : 91 - &
  • [43] DEPOSITION OF COCCOLITHS IN COMPENSATION ZONE OF ATLANTIC OCEAN
    SCHNEIDE.N
    AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS BULLETIN, 1973, 57 (09): : 1837 - 1837
  • [44] Patagonian Dust as a Source of Macronutrients in the Southwest Atlantic Ocean
    Paparazzo, Flavio E.
    Crespi-Abril, Augusto C.
    Goncalves, Rodrigo J.
    Barbieri, Elena S.
    Gracia Villalobos, Leilen L.
    Solis, Miriam E.
    Soria, Gaspar
    OCEANOGRAPHY, 2018, 31 (04) : 33 - 39
  • [45] Atmospheric deposition of methanol over the Atlantic Ocean
    Yang, Mingxi
    Nightingale, Philip D.
    Beale, Rachael
    Liss, Peter S.
    Blomquist, Byron
    Fairall, Christopher
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (50) : 20034 - 20039
  • [46] Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean
    Bif, Mariana Bernardi
    Yunes, Joao Sarkis
    AQUATIC MICROBIAL ECOLOGY, 2016, 78 (02) : 107 - 119
  • [47] Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean
    Windom, Herbert L.
    Moore, Willard S.
    Niencheski, L. Felipe H.
    Jahrike, Richard A.
    MARINE CHEMISTRY, 2006, 102 (3-4) : 252 - 266
  • [48] Organic complexation of iron in the West Atlantic Ocean
    Gerringa, L. J. A.
    Rijkenberg, M. J. A.
    Schoemann, V.
    Laan, P.
    de Baar, H. J. W.
    MARINE CHEMISTRY, 2015, 177 : 434 - 446
  • [49] Dissolved iron in the Southern Ocean (Atlantic sector)
    Klunder, M. B.
    Laan, P.
    Middag, R.
    De Baar, H. J. W.
    van Ooijen, J. C.
    DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2011, 58 (25-26) : 2678 - 2694
  • [50] The Distribution of Dissolved Iron in the West Atlantic Ocean
    Rijkenberg, Micha J. A.
    Middag, Rob
    Laan, Patrick
    Gerringa, Loes J. A.
    van Aken, Hendrik M.
    Schoemann, Veronique
    de Jong, Jeroen T. M.
    de Baar, Hein J. W.
    PLOS ONE, 2014, 9 (06):