Modeling dust and soluble iron deposition to the South Atlantic Ocean

被引:63
作者
Johnson, Matthew S. [9 ]
Meskhidze, Nicholas [9 ]
Solmon, Fabien [4 ]
Gasso, Santiago [5 ]
Chuang, Patrick Y. [2 ]
Gaiero, Diego M. [3 ]
Yantosca, Robert M. [1 ]
Wu, Shiliang [6 ,7 ]
Wang, Yuxuan [8 ]
Carouge, Claire [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA
[3] Univ Nacl Cordoba, FCEFyN, CIGeS, RA-5000 Cordoba, Argentina
[4] UPS, Lab Aerol, CNRS, Toulouse, France
[5] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[6] Michigan Technol Univ, Atmospher Sci Program, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA
[7] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA
[8] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China
[9] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
AEROSOL OPTICAL DEPTH; MINERAL DUST; SULFUR-DIOXIDE; PHYTOPLANKTON BLOOM; ATMOSPHERIC IRON; SAHARAN DUST; DESERT DUST; DISSOLUTION; TRANSPORT; ACID;
D O I
10.1029/2009JD013311
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean
    Barkley, Anne E.
    Prospero, Joseph M.
    Mahowald, Natalie
    Hamilton, Douglas S.
    Popendorf, Kimberly J.
    Oehlert, Amanda M.
    Pourmand, Ali
    Gatineau, Alexandre
    Panechou-Pulcherie, Kathy
    Blackwelder, Patricia
    Gaston, Cassandra J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (33) : 16216 - 16221
  • [32] Low source-inherited iron solubility limits fertilization potential of South American dust
    Simonella, Lucio E.
    Cosentino, Nicolas J.
    Montes, Maria L.
    Croot, Peter L.
    Palomeque, Miriam E.
    Gaiero, Diego M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 335 : 272 - 283
  • [33] Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin
    Prospero, Joseph M.
    Barkley, Anne E.
    Gaston, Cassandra J.
    Gatineau, Alexandre
    Sansano, Arthur Campos y
    Panechou, Kathy
    GLOBAL BIOGEOCHEMICAL CYCLES, 2020, 34 (09)
  • [34] Pre-Industrial, Present and Future Atmospheric Soluble Iron Deposition and the Role of Aerosol Acidity and Oxalate Under CMIP6 Emissions
    Bergas-Masso, Elisa
    Goncalves Ageitos, Maria
    Myriokefalitakis, Stelios
    Miller, Ron L.
    van Noije, Twan
    Le Sager, Philippe
    Montane Pinto, Gilbert
    Perez Garcia-Pando, Carlos
    EARTHS FUTURE, 2023, 11 (06)
  • [35] Saharan dust transport and deposition towards the tropical northern Atlantic
    Schepanski, K.
    Tegen, I.
    Macke, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (04) : 1173 - 1189
  • [36] Iron Biogeochemistry in the High Latitude North Atlantic Ocean
    Achterberg, Eric P.
    Steigenberger, Sebastian
    Marsay, Chris M.
    LeMoigne, Frederic A. C.
    Painter, Stuart C.
    Baker, Alex R.
    Connelly, Douglas P.
    Moore, C. Mark
    Tagliabue, Alessandro
    Tanhua, Toste
    SCIENTIFIC REPORTS, 2018, 8
  • [37] An iron curtain in the Atlantic Ocean forms a biogeochemical divide
    Capone, Douglas G.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (04) : 1231 - 1232
  • [38] African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean
    Huang, Jingfeng
    Zhang, Chidong
    Prospero, Joseph M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [39] Modeling the Impact of Ocean Circulation on Chlorophyll Blooms Around South Georgia, Southern Ocean
    Matano, R. P.
    Combes, V
    Young, E. F.
    Meredith, M. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (09)
  • [40] Saharan dust transport over the North Atlantic Ocean and Mediterranean: An overview
    Prospero, JM
    IMPACT OF DESERT DUST ACROSS THE MEDITERRANEAN, 1996, 11 : 133 - 151