A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato

被引:70
作者
Wang, Bing [1 ]
Zhai, Hong [1 ]
He, Shaozhen [1 ]
Zhang, Huan [1 ]
Ren, Zhitong [1 ]
Zhang, Dongdong [1 ]
Liu, Qingchang [1 ]
机构
[1] China Agr Univ, Minist Educ, Lab Crop Heterosis & Utilizat, Beijing Key Lab Crop Genet Improvement, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Drought tolerance; IbNHX2; Salt tolerance; Sweetpotato; Vacuolar Na+/H+ antiporter; EMBRYOGENIC SUSPENSION-CULTURES; PROLINE ACCUMULATION; MOLECULAR-CLONING; STRESS TOLERANCE; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; IPOMOEA-BATATAS; CANDIDATE GENES; ENZYME-ACTIVITY; OVEREXPRESSION;
D O I
10.1016/j.scienta.2016.01.027
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Plant vacuolar Na+/H+ antiporters (NHX) play a critical role in adaption to abiotic stresses by compartmentalizing Na+ into vacuoles from the cytosol. In this study, a vacuolar Na+/H+ antiporter gene, named IbNHX2, was isolated and characterized from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbNHX2 consisted of 542 amino acid residues with a conserved binding domain 'FFIYLLPPI' for amiloride and a cation/H+ exchanger domain, and shared a high amino acid identity (73.72-96.13%) with the identified vacuolar Na+/H+ antiporters in other plant species. The genomic DNA of IbNHX2 contained 14 exons and 13 introns. Expression of IbNHX2 was induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Its overexpression significantly enhanced salt and drought tolerance in the transgenic sweetpotato. An significant increase of proline content and superoxide dismutase (SOD) and photosynthesis activities and significant reduction of malonaldehyde (MDA) and H2O2 content were found in the transgenic sweetpotato plants. Up-regulation of the stress-responsive genes encoding pyrroline-5-carboxylate synthase (P5CS), SOD, catalase (CAT), zeaxanthinepoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), aldehyde oxidase (AO), late embryogenesis abundant protein (LEA), psbA and phosphoribulokinase (PRK) in the transgenic plants was also found under salt and drought stresses. The overall results demonstrate the explicit role of IbNHX2 in conferring salt and drought tolerance of sweetpotato. The IbNHX2 gene has the potential to be used for improving salt and drought tolerance of plants. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 50 条
  • [41] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Yang Zhou
    Chenglong Yang
    Yanping Hu
    Xiaochang Yin
    Ruimei Li
    Shaoping Fu
    Baibi Zhu
    Jianchun Guo
    Xingyu Jiang
    Acta Physiologiae Plantarum, 2018, 40
  • [42] Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato
    WANG Fei-bing
    ZHAI Hong
    AN Yan-yan
    SI Zeng-zhi
    HE Shao-zhen
    LIU Qing-chang
    Journal of Integrative Agriculture, 2016, 15 (02) : 271 - 281
  • [43] A Na+/H+ Antiporter Gene from Rosa multiflora (RmNHX2) Functions in Salt Tolerance via Modulating ROS Levels and Ion Homeostasis
    Luo, Haiyan
    Shen, Yuxiao
    Chen, Linmei
    Cui, Yongyi
    Luo, Ping
    HORTICULTURAE, 2023, 9 (03)
  • [44] Isolation and Characterization of a Putative Vacuolar Na+/H+ Antiporter Gene from Zoysia japonica L.
    Du, Yanhua
    Hei, Qian
    Liu, Yaxin
    Zhang, Hui
    Xu, Kai
    Xia, Tao
    JOURNAL OF PLANT BIOLOGY, 2010, 53 (04) : 251 - 258
  • [45] Cloning and Characterization of a Novel Vacuolar Na+/H+ Antiporter Gene (Dgnhx1) from Chrysanthemum
    Liu, Qing-Lin
    Xu, Ke-Dong
    Zhong, Ming
    Pan, Yuan-Zhi
    Jiang, Bei-Bei
    Liu, Guang-Li
    Jia, Yin
    PLOS ONE, 2013, 8 (12):
  • [46] Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1
    Zhou, Shufeng
    Chen, Xianyang
    Zhang, Xinguo
    Li, Yinxin
    BIOTECHNOLOGY LETTERS, 2008, 30 (02) : 369 - 376
  • [47] Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na+/H+ antiporter AtNHX1
    Zhou, Shufeng
    Zhang, Zhiming
    Tang, Qilin
    Lan, Hai
    Li, Yinxin
    Luo, Ping
    BIOTECHNOLOGY LETTERS, 2011, 33 (02) : 375 - 380
  • [48] Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana
    Mishra, Sagarika
    Alavilli, Hemasundar
    Lee, Byeong-Ha
    Panda, Sanjib Kumar
    Sahoo, Lingaraj
    PLOS ONE, 2014, 9 (10):
  • [49] RETRACTED ARTICLE: Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa
    Fengyun Zhao
    Zenglan Wang
    Quan Zhang
    Yanxiu Zhao
    Hui Zhang
    Journal of Plant Research, 2006, 119 : 95 - 104
  • [50] Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1
    Shufeng Zhou
    Xianyang Chen
    Xinguo Zhang
    Yinxin Li
    Biotechnology Letters, 2008, 30 : 369 - 376