A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato

被引:70
|
作者
Wang, Bing [1 ]
Zhai, Hong [1 ]
He, Shaozhen [1 ]
Zhang, Huan [1 ]
Ren, Zhitong [1 ]
Zhang, Dongdong [1 ]
Liu, Qingchang [1 ]
机构
[1] China Agr Univ, Minist Educ, Lab Crop Heterosis & Utilizat, Beijing Key Lab Crop Genet Improvement, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Drought tolerance; IbNHX2; Salt tolerance; Sweetpotato; Vacuolar Na+/H+ antiporter; EMBRYOGENIC SUSPENSION-CULTURES; PROLINE ACCUMULATION; MOLECULAR-CLONING; STRESS TOLERANCE; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; IPOMOEA-BATATAS; CANDIDATE GENES; ENZYME-ACTIVITY; OVEREXPRESSION;
D O I
10.1016/j.scienta.2016.01.027
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Plant vacuolar Na+/H+ antiporters (NHX) play a critical role in adaption to abiotic stresses by compartmentalizing Na+ into vacuoles from the cytosol. In this study, a vacuolar Na+/H+ antiporter gene, named IbNHX2, was isolated and characterized from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbNHX2 consisted of 542 amino acid residues with a conserved binding domain 'FFIYLLPPI' for amiloride and a cation/H+ exchanger domain, and shared a high amino acid identity (73.72-96.13%) with the identified vacuolar Na+/H+ antiporters in other plant species. The genomic DNA of IbNHX2 contained 14 exons and 13 introns. Expression of IbNHX2 was induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Its overexpression significantly enhanced salt and drought tolerance in the transgenic sweetpotato. An significant increase of proline content and superoxide dismutase (SOD) and photosynthesis activities and significant reduction of malonaldehyde (MDA) and H2O2 content were found in the transgenic sweetpotato plants. Up-regulation of the stress-responsive genes encoding pyrroline-5-carboxylate synthase (P5CS), SOD, catalase (CAT), zeaxanthinepoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), aldehyde oxidase (AO), late embryogenesis abundant protein (LEA), psbA and phosphoribulokinase (PRK) in the transgenic plants was also found under salt and drought stresses. The overall results demonstrate the explicit role of IbNHX2 in conferring salt and drought tolerance of sweetpotato. The IbNHX2 gene has the potential to be used for improving salt and drought tolerance of plants. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 50 条
  • [1] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Xu, Kai
    Hong, Ping
    Luo, Lijun
    Xia, Tao
    JOURNAL OF PLANT BIOLOGY, 2009, 52 (05) : 453 - 461
  • [2] Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato
    Bhaskaran, Shimna
    Savithramma, D. L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (15) : 5561 - 5570
  • [3] Overexpression of AtNHX1, a Vacuolar Na+/H+ Antiporter from Arabidopsis thalina, in Petunia hybrida Enhances Salt and Drought Tolerance
    Kai Xu
    Ping Hong
    Lijun Luo
    Tao Xia
    Journal of Plant Biology, 2009, 52 : 453 - 461
  • [4] Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato
    Wang Fei-bing
    Zhai Hong
    An Yan-yan
    Si Zeng-zhi
    He Shao-zhen
    Liu Qing-chang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2016, 15 (02) : 271 - 281
  • [5] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Chen, Hui
    An, Rui
    Tang, Jiang-Hua
    Cui, Xiang-Huan
    Hao, Fu-Shun
    Chen, Jia
    Wang, Xue-Chen
    MOLECULAR BREEDING, 2007, 19 (03) : 215 - 225
  • [6] Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice
    Hui Chen
    Rui An
    Jiang-Hua Tang
    Xiang-Huan Cui
    Fu-Shun Hao
    Jia Chen
    Xue-Chen Wang
    Molecular Breeding, 2007, 19 : 215 - 225
  • [7] Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance
    Mishra, Sagarika
    Alavilli, Hemasundar
    Lee, Byeong-ha
    Panda, Sanjib Kumar
    Sahoo, Lingaraj
    PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 120 (01) : 19 - 33
  • [8] Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations
    Li TianXing
    Zhang Yue
    Liu Hua
    Wu YuTing
    Li WenBin
    Zhang HongXia
    CHINESE SCIENCE BULLETIN, 2010, 55 (12): : 1127 - 1134
  • [9] Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis
    Zhao, Junsheng
    Zhi, Daying
    Xue, Zheyong
    Liu, Heng
    Xia, Guangmin
    JOURNAL OF PLANT PHYSIOLOGY, 2007, 164 (10) : 1377 - 1383
  • [10] A new Na+/H+ antiporter gene KvNHX1 isolated from the halophyte Kosteletzkya virginica improves salt tolerance in transgenic tobacco
    Wang, Hongyan
    Ding, Qiang
    Wang, Honglei
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (06) : 1378 - 1386