A horizontally scalable online processing system for trigger-less data acquisition

被引:4
作者
Migliorini, Matteo [1 ,2 ]
Pazzini, Jacopo [1 ,2 ]
Triossi, Andrea [1 ,2 ]
Zanetti, Marco [1 ,2 ]
Zucchetta, Alberto [2 ]
机构
[1] Padova Univ, Dept Phys & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[2] Natl Inst Nucl Phys, Padova Div, Via Marzolo 8, I-35131 Padua, Italy
关键词
Data acquisition; Trigger; Online data processing;
D O I
10.1016/j.nima.2022.166869
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The vast majority of high energy physics experiments rely on data acquisition and hardware-based trigger systems performing a number of stringent selections before storing data for offline analysis. The online reconstruction and selection performed at the trigger level are bound to the synchronous nature of the data acquisition system, resulting in a trade-off between the amount of data collected and the complexity of the online reconstruction performed. Exotic physics processes, such as long-lived and slow-moving particles, are rarely targeted by online triggers as they require complex and nonstandard online reconstruction, usually incompatible with the time constraints of most data acquisition systems. The online trigger selection can thus impact as one of the main limiting factors to the experimental reach for exotic signatures. Alternative data acquisition solutions based on the continuous and asynchronous processing of the stream of data from the detectors are therefore foreseeable as a way to extend the experimental physics reach. Trigger-less data readout systems, paired with efficient streaming data processing solutions, can provide a viable alternative. In this document, an end-to-end implementation of a fully trigger-less data acquisition and online data processing system is discussed. An easily scalable and deployable implementation of such an architecture is proposed, based on open-source distributed computing frameworks capable of performing asynchronous online processing of streaming data. The proposed schema can be suitable for deployment as a fully integrated data acquisition system for small-scale experimental apparatus, or to complement the trigger-based data acquisition systems of larger experiments. A muon telescope setup consisting of a set of gaseous detectors is used as the experimental development testbed in this work, and a fully integrated online processing pipeline deployed on cloud computing resources is implemented and described.
引用
收藏
页数:7
相关论文
共 27 条
  • [1] The ATLAS Data Acquisition and High Level Trigger system
    Abolins, M.
    Abreu, R.
    Achenbach, R.
    Aharrouche, M.
    Aielli, G.
    Al-Shabibi, A.
    Aleksandrov, I
    Alexandrov, E.
    Allbrooke, B. M.
    Aloisio, A.
    Alonso, F.
    Alvarez-Gonzalez, B.
    Alviggi, M. G.
    Amorim, A.
    Amram, N.
    Anders, G.
    Andreani, A.
    Andreazza, A.
    Andrei, V
    Anduaga, X.
    Angelaszek, D.
    Anjos, N.
    Annovi, A.
    Antonelli, S.
    Anulli, F.
    Apolle, R.
    Aracena, I
    Artoni, G.
    Ask, S.
    Asman, B.
    Soares Augusto, M.
    Avolio, G.
    Backes, M.
    Badescu, E.
    Baines, J.
    Ballestrero, S.
    Banerjee, S. W.
    Bansil, H. S.
    Barnett, B. M.
    Bartoldus, R.
    Bartsch, V
    Batraneanu, S.
    Battaglia, A.
    Bauss, B.
    Beauchemin, P.
    Beck, H. P.
    Bee, C.
    Beemster, L.
    Begel, M.
    Belanger-Champagne, C.
    [J]. JOURNAL OF INSTRUMENTATION, 2016, 11
  • [2] Study of muon pair production from positron annihilation at threshold energy
    Amapane, N.
    Antonelli, M.
    Anulli, F.
    Ballerini, G.
    Bandiera, L.
    Bartosik, N.
    Bauce, M.
    Bertolin, A.
    Biino, C.
    Blanco-Garcia, O. R.
    Boscolo, M.
    Brizzolari, C.
    Cappati, A.
    Casarsa, M.
    Cavoto, G.
    Collamati, F.
    Cotto, G.
    Curatolo, C.
    Di Nardo, R.
    Gonella, F.
    Hoh, S.
    Iafrati, M.
    Iacoangeli, F.
    Kiani, B.
    Lucchesi, D.
    Mascagna, V.
    Paccagnella, A.
    Pastrone, N.
    Pazzini, J.
    Pelliccioni, M.
    Ponzio, B.
    Prest, M.
    Ricci, M.
    Rossin, R.
    Rotondo, M.
    Planell, O. Sans
    Sestini, L.
    Soldani, M.
    Triossi, A.
    Vallazza, E.
    Ventura, S.
    Zanetti, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (01)
  • [3] Merging OpenStack-based private clouds: the case of CloudVeneto.it
    Andreetto, Paolo
    Chiarello, Fabrizio
    Costa, Fulvia
    Crescente, Alberto
    Fantinel, Sergio
    Fanzago, Federica
    Konomi, Ervin
    Mazzon, Paolo Emilio
    Menguzzato, Matteo
    Segatta, Matteo
    Sella, Gianpietro
    Sgaravatto, Massimo
    Traldi, Sergio
    Verlato, Marco
    Zangrando, Lisa
    [J]. 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [4] [Anonymous], Grafana
  • [5] [Anonymous], STRIMZI
  • [6] [Anonymous], APACHE KAFKA
  • [7] [Anonymous], NGINX INGRESS CONTRO
  • [8] [Anonymous], KUBERNETES
  • [9] [Anonymous], INFN CLOUD
  • [10] The XENON1T data acquisition system
    Aprile, E.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, V. C.
    Arneodo, F.
    Barge, D.
    Baudis, L.
    Bauermeister, B.
    Bellagamba, L.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, J.
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, A. D.
    Fieguth, A.
    Fulgione, W.
    Gaemers, P.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    [J]. JOURNAL OF INSTRUMENTATION, 2019, 14 (07)