Analytic Continuation Formulas for the Hypergeometric Functions in Three Variables of Second Order

被引:12
作者
Hasanov, A. [1 ,2 ]
Yuldashev, T. K. [3 ,4 ]
机构
[1] VI Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[2] Tashkent Inst Engineers Irrigat & Mechanizat Agr, Tashkent 100000, Uzbekistan
[3] Natl Univ Uzbekistan, Uzbek Israel Joint Fac High Technol & Engn Math, Tashkent 100174, Uzbekistan
[4] Jizzakh State Pedag Inst, Fac Phys & Math, Jizzakh 130100, Uzbekistan
关键词
Gauss hypergeometric function; hypergeometric functions of three variables; analytical continuation formulas; integral representations; FUNDAMENTAL-SOLUTIONS; TRICOMI OPERATOR; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1134/S1995080222050146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, some kind of hypergeometric functions are considered. For the three variables hypergeometric functions F-1c (x, y, z), F-2c (x, y, z), F-4b (x, y, z), F-4c (x, y, z), F-5b (x, y, z), F-5c (x, y, z) are obtained the new analytic continuation formulas.
引用
收藏
页码:386 / 393
页数:8
相关论文
共 30 条
[1]  
Appell P., 1926, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite
[2]   Fundamental solutions of the Tricomi operator, III [J].
Barros-Neto, J ;
Gelfand, IM .
DUKE MATHEMATICAL JOURNAL, 2005, 128 (01) :119-140
[3]  
Barros-Neto J, 2002, DUKE MATH J, V111, P561
[4]   Fundamental solutions for the Tricomi operator [J].
Barros-Neto, J ;
Gelfand, IM .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (03) :465-483
[5]   Solution of Cauchy Problem for the Generalized Gellerstedt Equation [J].
Berdyshev, A. S. ;
Hasanov, A. ;
Abdiramanov, Zh. A. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (09) :1762-1771
[6]  
Bers L., 1958, Mathematical Aspects of Subsonic and Transonic Gas Dynamics
[7]   On a New Representation for the Solution of the Riemann-Hilbert Problem [J].
Bezrodnykh, S. I. ;
Vlasov, V. I. .
MATHEMATICAL NOTES, 2016, 99 (5-6) :932-937
[8]   Jacobi-Type Differential Relations for the Lauricella Function FD(N) [J].
Bezrodnykh, S. I. .
MATHEMATICAL NOTES, 2016, 99 (5-6) :821-833
[9]   Analytic continuation formulas and Jacobi-type relations for Lauricella function [J].
Bezrodnykh, S. I. .
DOKLADY MATHEMATICS, 2016, 93 (02) :129-134
[10]  
Bezrodnykh S. I., 2002, Comput. Math. Math. Phys, V42, P263