Maths-type q-deformed coherent states for q > 1

被引:43
作者
Quesne, C
Penson, KA
Tkachuk, VM
机构
[1] Free Univ Brussels, Phys Nucl Theor & Phys Math, B-1050 Brussels, Belgium
[2] Univ Paris 06, Phys Theor Liquides Lab, CNRS, UMR 7600, F-75252 Paris 05, France
[3] Ivan Franko Lviv Natl Univ, Chair Theoret Phys, UA-79005 Lvov, Ukraine
关键词
coherent states; q-deformations; uncertainty relations;
D O I
10.1016/S0375-9601(03)00732-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maths-type q-deformed coherent states with q > 1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 28 条
  • [1] INTELLIGENT SPIN STATES
    ARAGONE, C
    GUERRI, G
    SALAMO, S
    TANI, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (15): : L149 - L151
  • [2] HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES
    ARIK, M
    COON, DD
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) : 524 - 527
  • [3] A q-analogue of the Euler gamma integral
    Atakishiyev, NM
    Atakishiyeva, MK
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (01) : 1325 - 1334
  • [4] ON THE QUANTUM DIFFERENTIAL-CALCULUS AND THE QUANTUM HOLOMORPHICITY
    BRZEZINSKI, T
    DABROWSKI, H
    REMBIELINSKI, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (01) : 19 - 24
  • [5] Q-INTEGRALS ON THE QUANTUM COMPLEX-PLANE
    BRZEZINSKI, T
    REMBIELINSKI, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : 1945 - 1952
  • [6] Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations
    Chang, LN
    Minic, D
    Okamura, N
    Takeuchi, T
    [J]. PHYSICAL REVIEW D, 2002, 65 (12)
  • [7] 'Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years
    Dodonov, VV
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (01) : R1 - R33
  • [8] Gasper G., 1990, Basic Hypergeometric Series
  • [9] Maximal localization in the presence of minimal uncertainties in positions and in momenta
    Hinrichsen, H
    Kempf, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) : 2121 - 2137
  • [10] REMARKS ON THE Q-QUANTIZATION
    JANNUSSIS, A
    BRODIMAS, G
    SOURLAS, D
    ZISIS, V
    [J]. LETTERE AL NUOVO CIMENTO, 1981, 30 (04): : 123 - 127