Convergence Analysis for Anisotropic Monte Carlo Sampling Spectra

被引:8
作者
Singh, Gurprit [1 ]
Jarosz, Wojciech [1 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2017年 / 36卷 / 04期
关键词
Monte Carlo; stochastic sampling; signal processing;
D O I
10.1145/3072959.3073656
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Traditional Monte Carlo (MC) integration methods use point samples to numerically approximate the underlying integral. This approximation introduces variance in the integrated result, and this error can depend critically on the sampling patterns used during integration. Most of the well-known samplers used for MC integration in graphics-e.g. jittered, Latin-hypercube (N-rooks), multijitteredare anisotropic in nature. However, there are currently no tools available to analyze the impact of such anisotropic samplers on the variance convergence behavior of Monte Carlo integration. In this work, we develop a Fourier-domain mathematical tool to analyze the variance, and subsequently the convergence rate, of Monte Carlo integration using any arbitrary (anisotropic) sampling power spectrum. We also validate and leverage our theoretical analysis, demonstrating that judicious alignment of anisotropic sampling and integrand spectra can improve variance and convergence rates in MC rendering, and that similar improvements can apply to (anisotropic) deterministic samplers.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Monte Carlo analysis of energy dependent anisotropy of bremsstrahlung x-ray spectra
    Kakonyi, Robert
    Erdelyi, Miklos
    Szabo, Gabor
    [J]. MEDICAL PHYSICS, 2009, 36 (09) : 3897 - 3905
  • [22] Efficient Monte Carlo simulation of heavy ion elastic recoil detection analysis spectra
    Franich, RD
    Johnston, PN
    Bubb, IF
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 219 : 87 - 94
  • [23] ON THE CONVERGENCE OF MONTE-CARLO MAXIMUM-LIKELIHOOD CALCULATIONS
    GEYER, CJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1994, 56 (01): : 261 - 274
  • [24] Convergence of a particle Monte Carlo algorithm for scalar conservation laws
    Towers, John D.
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2025, 31 (01): : 59 - 73
  • [25] Analysis of inconsistent source sampling in monte carlo weight-window variance reduction methods
    Griesheimer, David P.
    Sandhu, Virinder S.
    [J]. NUCLEAR ENGINEERING AND TECHNOLOGY, 2017, 49 (06) : 1172 - 1180
  • [26] Aerospace applications of Weibull and Monte Carlo simulation with importance sampling
    Bavuso, SJ
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 1997 PROCEEDINGS: THE INTERNATIONAL SYMPOSIUM ON PRODUCT QUALITY & INTEGRITY, 1997, : 208 - 210
  • [27] Enhancing backbone sampling in Monte Carlo simulations using internal coordinates normal mode analysis
    Gil, Victor A.
    Lecina, Daniel
    Grebner, Christoph
    Guallar, Victor
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (20) : 4855 - 4866
  • [28] Application and Research of Monte Carlo Sampling Algorithm in Music Generation
    Min, Jun
    Wang, Lei
    Pang, Junwei
    Han, Huihui
    Li, Dongyang
    Zhang, Maoqing
    Huang, Yantai
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (10): : 3355 - 3372
  • [29] STATISTICAL AND SYSTEMATIC-ERRORS IN MONTE-CARLO SAMPLING
    FERRENBERG, AM
    LANDAU, DP
    BINDER, K
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) : 867 - 882
  • [30] Refined descriptive sampling: A better approach to Monte Carlo simulation
    Tari, M
    Dahmani, A
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2006, 14 (02) : 143 - 160