Convergence Analysis for Anisotropic Monte Carlo Sampling Spectra

被引:8
|
作者
Singh, Gurprit [1 ]
Jarosz, Wojciech [1 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2017年 / 36卷 / 04期
关键词
Monte Carlo; stochastic sampling; signal processing;
D O I
10.1145/3072959.3073656
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Traditional Monte Carlo (MC) integration methods use point samples to numerically approximate the underlying integral. This approximation introduces variance in the integrated result, and this error can depend critically on the sampling patterns used during integration. Most of the well-known samplers used for MC integration in graphics-e.g. jittered, Latin-hypercube (N-rooks), multijitteredare anisotropic in nature. However, there are currently no tools available to analyze the impact of such anisotropic samplers on the variance convergence behavior of Monte Carlo integration. In this work, we develop a Fourier-domain mathematical tool to analyze the variance, and subsequently the convergence rate, of Monte Carlo integration using any arbitrary (anisotropic) sampling power spectrum. We also validate and leverage our theoretical analysis, demonstrating that judicious alignment of anisotropic sampling and integrand spectra can improve variance and convergence rates in MC rendering, and that similar improvements can apply to (anisotropic) deterministic samplers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Variance and Convergence Analysis of Monte Carlo Line and Segment Sampling
    Singh, Gurprit
    Miller, Bailey
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 79 - 89
  • [2] Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence
    Janssen, Hans
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 109 : 123 - 132
  • [3] CONVERGENCE ANALYSIS OF QUASI-MONTE CARLO SAMPLING FOR QUANTILE AND EXPECTED SHORTFALL
    He, Zhijian
    Wang, Xiaoqun
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 303 - 319
  • [4] BREMSSTRAHLUNG SPECTRA SAMPLING FOR MONTE-CARLO SIMULATIONS
    MORIN, RL
    RAESIDE, DE
    PHYSICS IN MEDICINE AND BIOLOGY, 1982, 27 (02): : 223 - 228
  • [5] Markov Chain Monte Carlo Sampling for Target Analysis of Transient Absorption Spectra
    Ashner, Matthew N.
    Winslow, Samuel W.
    Swan, James W.
    Tisdale, William A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (17): : 3893 - 3902
  • [6] Markov Chain Monte Carlo Methods for Lattice Gaussian Sampling: Convergence Analysis and Enhancement
    Wang, Zheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (10) : 6711 - 6724
  • [7] Metropolis Monte Carlo sampling: convergence, localization transition and optimality
    Chepelianskii, Alexei D.
    Majumdar, Satya N.
    Schawe, Hendrik
    Trizac, Emmanuel
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (12):
  • [8] Convergence Rates for the Constrained Sampling via Langevin Monte Carlo
    Zhu, Yuanzheng
    ENTROPY, 2023, 25 (08)
  • [9] Convergence analysis of multifidelity Monte Carlo estimation
    Benjamin Peherstorfer
    Max Gunzburger
    Karen Willcox
    Numerische Mathematik, 2018, 139 : 683 - 707
  • [10] Convergence analysis of multifidelity Monte Carlo estimation
    Peherstorfer, Benjamin
    Gunzburger, Max
    Willcox, Karen
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 683 - 707