Gibbs phenomena for some classical orthogonal polynomials

被引:8
作者
Davis, John M. [1 ]
Hagelstein, Paul [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Orthogonal polynomials; Gibbs phenomenon; SERIES;
D O I
10.1016/j.jmaa.2021.125574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Gibbs phenomena associated to partial sums of Fourier series are now well understood. In this paper, we show that Gibbs phenomena also occur for expansions of functions in terms of members of one of several general classes of orthogonal polynomials, in particular treating in a relatively unified manner expansions in either Legendre (more generally Jacobi), Hermite, or Laguerre polynomials. Noteworthy is the fact that the Gibbs constants associated to all of these expansions have the f pi same value, approximately 0.0893 or more precisely 1/pi integral(pi)(0) sint t/dt - 1/2 . (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 10 条
  • [1] Davis J.M., 2013, INTRO APPL PARTIAL D
  • [2] The Gibbs phenomenon for series of orthogonal polynomials
    Fay, T. H.
    Kloppersz, P. Hendrik
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (08) : 973 - 989
  • [3] Gabor S., 1975, ORTHOGONAL POLYNOMIA, V23
  • [4] On the Gibbs phenomenon and its resolution
    Gottlieb, D
    Shu, CW
    [J]. SIAM REVIEW, 1997, 39 (04) : 644 - 668
  • [5] Gradshteyn I.S., 2015, TABLE INTEGRALS SERI
  • [6] Hobson EW, 1909, P LOND MATH SOC, V7, P24
  • [7] Jacob M. M., 1937, CR HEBD ACAD SCI, V204, P1540
  • [8] Kaber S.-M., 2006, COMMUN APPL ANAL, V10, P133
  • [9] Sansone G., 1991, ORTHOGONAL FUNCTIONS
  • [10] Zygmund A., 2002, TRIGONOMETRIC SERIES, V3