INTERPOLATING SEQUENCES FOR ANALYTIC SELFMAPPINGS OF THE DISC

被引:1
作者
Menal Ferrer, Pere [1 ]
Monreal Galan, Nacho [1 ]
Nicolau, Artur [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
VALUES;
D O I
10.1353/ajm.2011.0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schwarz's Lemma leads to a natural interpolation problem for analytic functions from the disc into itself. The corresponding interpolating sequences are geometrically described in terms of a certain hyperbolic density.
引用
收藏
页码:437 / 465
页数:29
相关论文
共 19 条
[1]  
AGLER J., 2002, GRADUATE STUD MATH, V44
[2]  
[Anonymous], 2007, GRAD TEXTS MATH
[3]  
[Anonymous], SPRINGER UNDERGRADUA
[4]  
[Anonymous], GRAD STUDIES MATH
[5]   Interpolation by functions in the Bloch space [J].
Boe, B ;
Nicolau, A .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1) :171-194
[6]   AN INTERPOLATION PROBLEM FOR BOUNDED ANALYTIC FUNCTIONS [J].
CARLESON, L .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :921-930
[7]  
CARTAN E, 1951, LECONS GEOMETRIE ESP
[8]   A CONCEPT OF THE MASS CENTER OF A SYSTEM OF MATERIAL POINTS IN THE CONSTANT CURVATURE SPACES [J].
GALPERIN, GA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (01) :63-84
[9]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[10]   L-INFINITY ESTIMATES FOR THE DELTA-BAR PROBLEM IN A HALF-PLANE [J].
JONES, PW .
ACTA MATHEMATICA, 1983, 150 (1-2) :137-152