Relaxation of Hamilton-Jacobi equations

被引:4
作者
Ishii, H
Loreti, P
机构
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
D O I
10.1007/s00205-003-0268-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relaxation of Hamilton-Jacobi equations. The relaxation in our terminology is the following phenomenon: the pointwise supremum over a certain collection of subsolutions, in the almost everywhere sense, of a Hamilton-Jacobi equation yields a viscosity solution of the ``convexified'' Hamilton-Jacobi equation. This phenomenon has recently been observed in [13] in eikonal equations. We show in this paper that this relaxation is a common phenomenon for a wide range of Hamilton-Jacobi equations.
引用
收藏
页码:265 / 304
页数:40
相关论文
共 18 条
  • [1] BARLES G, 1982, ANN I H POINCARE, V2, P21
  • [2] Barron EN, 2001, ARCH RATION MECH AN, V157, P255, DOI 10.1007/s002050100133
  • [3] Barron EN, 1999, NATO ADV SCI I C-MAT, V528, P1
  • [4] Bhattacharya T., 1989, Rend. Sem. Mat. Univ. Pol. Torino Fasc. Spec., P15
  • [5] CRANDALL MG, 1987, J MATH SOC JPN, V39, P581
  • [6] USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS
    CRANDALL, MG
    ISHII, H
    LIONS, PL
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) : 1 - 67
  • [7] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) : 1 - 42
  • [8] Crandall MG, 2001, CALC VAR PARTIAL DIF, V13, P123
  • [9] Dacorogna B., 1999, Progress in Nonlinear Differential Equations and their Applications, V37
  • [10] Ekeland I., 1976, STUDIES MATH ITS APP, V1