CTP regulates membrane-binding activity of the nucleoid occlusion Noc

被引:18
作者
Jalal, Adam S. B. [1 ]
Tran, Ngat T. [1 ]
Wu, Ling J. [2 ]
Ramakrishnan, Karunakaran [1 ]
Rejzek, Martin [3 ]
Gobbato, Giulia [1 ]
Stevenson, Clare E. M. [4 ]
Lawson, David M. [4 ]
Errington, Jeff [2 ]
Le, Tung B. K. [1 ]
机构
[1] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
[2] Newcastle Univ, Ctr Bacterial Cell Biol, Med Sch, Biosci Inst, Newcastle Upon Tyne NE2 4AX, Tyne & Wear, England
[3] John Innes Ctr, Chem Platform, Norwich NR4 7UH, Norfolk, England
[4] John Innes Ctr, Dept Biol Chem, Norwich NR4 7UH, Norfolk, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
CHROMOSOME SEGREGATION; CELL-DIVISION; PROTEIN; DNA; MIND; PARTITION; CURVATURE; MECHANISM; TRANSPORT; SITES;
D O I
10.1016/j.molcel.2021.06.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.
引用
收藏
页码:3623 / +
页数:21
相关论文
共 58 条
[1]   Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane [J].
Adams, David William ;
Wu, Ling Juan ;
Errington, Jeff .
EMBO JOURNAL, 2015, 34 (04) :491-501
[2]   Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB [J].
Basu, MK ;
Koonin, EV .
CELL CYCLE, 2005, 4 (07) :947-952
[3]   Membrane curvature induced by Arf1-GTP is essential for vesicle formation [J].
Beck, Rainer ;
Sun, Zhe ;
Adolf, Frank ;
Rutz, Chistoph ;
Bassler, Jochen ;
Wild, Klemens ;
Sinning, Irmgard ;
Hurt, Ed ;
Bruegger, Britta ;
Bethune, Julien ;
Wieland, Felix .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11731-11736
[4]   Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission [J].
Bielli, A ;
Haney, CJ ;
Gabreski, G ;
Watkins, SC ;
Bannykh, SI ;
Aridor, M .
JOURNAL OF CELL BIOLOGY, 2005, 171 (06) :919-924
[5]   GEFs and GAPs: Critical elements in the control of small G proteins [J].
Bos, Johannes L. ;
Rehmann, Holger ;
Wittinghofer, Alfred .
CELL, 2007, 129 (05) :865-877
[6]   Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome [J].
Breier, Adam M. ;
Grossman, Alan D. .
MOLECULAR MICROBIOLOGY, 2007, 64 (03) :703-718
[7]   Characterization of nucleotide pools as a function of physiological state in Escherzchia coli [J].
Buckstein, Michael H. ;
He, Jian ;
Rubin, Harvey .
JOURNAL OF BACTERIOLOGY, 2008, 190 (02) :718-726
[8]   The Buccaneer software for automated model building.: 1.: Tracing protein chains [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1002-1011
[9]  
DODONOVA SO, 2017, ELIFE, V6, DOI DOI 10.7554/ELIFE.26691
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132