Discriminating Quantum States with Quantum Machine Learning

被引:3
作者
Quiroga, David [1 ]
Date, Prasanna [2 ]
Pooser, Raphael [3 ]
机构
[1] Univ Antioquia, Engn Fac, Medellin, Colombia
[2] Oak Ridge Natl Lab, Comp Sci & Math, Oak Ridge, TN USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn, Oak Ridge, TN USA
来源
2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021) | 2021年
关键词
Quantum Computing; Machine Learning; Quantum Machine Learning; K-Means; QK-Means; Crosstalk;
D O I
10.1109/ICRC53822.2021.00018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning (QML) algorithms have obtained great relevance in the machine learning (ML) field due to the promise of quantum speedups when performing basic linear algebra subroutines (BLAS), a fundamental element in most ML algorithms. By making use of BLAS operations, we propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity of O(NKlog(D)I/C) to apply it to the fundamental problem of discriminating quantum states at readout. Discriminating quantum states allows the identification of quantum states vertical bar 0 > and vertical bar 1 > from low-level in-phase and quadrature signal (IQ) data, and can be done using custom ML models. In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device and managed to find assignment fidelities of up to 98.7% that were only marginally lower than that of the k-means algorithm. We also performed a cross-talk benchmark on the quantum device by applying both algorithms to perform state discrimination on a combination of quantum states and using Pearson Correlation coefficients and assignment fidelities of discrimination results to conclude on the presence of cross-talk on qubits. Evidence shows cross-talk in the (1, 2) and (2, 3) neighboring qubit couples for the analyzed device.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 41 条
[11]   Improved superconducting qubit coherence using titanium nitride [J].
Chang, Josephine B. ;
Vissers, Michael R. ;
Corcoles, Antonio D. ;
Sandberg, Martin ;
Gao, Jiansong ;
Abraham, David W. ;
Chow, Jerry M. ;
Gambetta, Jay M. ;
Rothwell, Mary Beth ;
Keefe, George A. ;
Steffen, Matthias ;
Pappas, David P. .
APPLIED PHYSICS LETTERS, 2013, 103 (01)
[12]   Complete randomized benchmarking protocol accounting for leakage errors [J].
Chasseur, T. ;
Wilhelm, F. K. .
PHYSICAL REVIEW A, 2015, 92 (04)
[13]   QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION [J].
Childs, Andrew M. ;
Kothari, Robin ;
Somma, Rolando D. .
SIAM JOURNAL ON COMPUTING, 2017, 46 (06) :1920-1950
[14]  
Date P., 2019, P FUT INF COMM C, P98, DOI DOI 10.1007/978-3-030-12385-79
[15]   QUBO formulations for training machine learning models [J].
Date, Prasanna ;
Arthur, Davis ;
Pusey-Nazzaro, Lauren .
SCIENTIFIC REPORTS, 2021, 11 (01)
[16]   Quantum-Enhanced Machine Learning [J].
Dunjko, Vedran ;
Taylor, Jacob M. ;
Briegel, Hans J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)
[17]   Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation [J].
Endo, Suguru ;
Cai, Zhenyu ;
Benjamin, Simon C. ;
Yuan, Xiao .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
[18]   Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit [J].
Feng, Guanru ;
Wallman, Joel J. ;
Buonacorsi, Brandon ;
Cho, Franklin H. ;
Park, Daniel K. ;
Xin, Tao ;
Lu, Dawei ;
Baugh, Jonathan ;
Laflamme, Raymond .
PHYSICAL REVIEW LETTERS, 2016, 117 (26)
[19]   A METHOD FOR COMPARING 2 HIERARCHICAL CLUSTERINGS [J].
FOWLKES, EB ;
MALLOWS, CL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (383) :553-569
[20]   Benchmarking noise extrapolation with the OpenPulse control framework [J].
Garmon, J. W. O. ;
Pooser, R. C. ;
Dumitrescu, E. F. .
PHYSICAL REVIEW A, 2020, 101 (04)