List injective colorings of planar graphs

被引:30
作者
Borodin, O. V. [1 ]
Ivanova, A. O. [2 ]
机构
[1] Russian Acad Sci, Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Yakutsk State Univ, Inst Math, Yakutsk 677891, Russia
基金
俄罗斯基础研究基金会;
关键词
Planar graph; Injective coloring; Girth; CHROMATIC NUMBER; GIRTH; 6; EDGE;
D O I
10.1016/j.disc.2010.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex coloring of a graph C is called injective if any two vertices joined by a path of length two get different colors. A graph G is injectively k-choosable if any list L of admissible colors on V(G) of size k allows an injective coloring phi such that phi(nu) is an element of L(nu) whenever nu is an element of V(G). The least k for which G is injectively k-choosable is denoted by chi(l)(j)(G). Note that chi(l)(j) >= Delta for every graph with maximum degree Delta. For planar graphs with girth g, Bu et al. (2009) [15] proved that chi(l)(j) = Delta if Delta >= 71 and g >= 7, which we strengthen here to Delta >= 16. On the other hand, there exist planar graphs with g = 6 and chi(l)(j) = Delta + 1 for any Delta >= 2. Cranston et al. (submitted for publication) [16] proved that chi(l)(j) < Delta + 1 if g >= 9 and Delta >= 4. We prove that each planar graph with g >= 6 and Delta >= 24 has chi(l)(j) <= Delta + 1. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 165
页数:12
相关论文
共 24 条
[1]   Coloring powers of planar graphs [J].
Agnarsson, G ;
Halldórsson, MM .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) :651-662
[2]  
Agnarsson G, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P654
[3]  
Borodin OV, 2006, SIB ELECTRON MATH RE, V3, P441
[4]   2-distance (Δ+2)-coloring of planar graphs with girth six and Δ ≥ 18 [J].
Borodin, O. V. ;
Ivanova, A. O. .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6496-6502
[5]  
Borodin O.V., 2005, DISKRETN ANAL ISSL 1, V1 12
[6]  
Borodin O.V., 2009, SIB MAT ZH, V6, P1216
[7]  
Borodin O.V., 2007, DISKRETN ANAL ISSL 1, V14, P13
[8]  
Borodin O.V., 2004, Siberian Electronic Math. Reports, V1, P129
[9]   List 2-distance (Δ+2)-coloring of planar graphs with girth six [J].
Borodin, Oleg V. ;
Ivanova, Anna O. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1257-1262
[10]  
Borodin Oleg V., 2004, SIB ELEKT MAT IZV, V1, P76