Development of a model to predict electroencephalographic seizures in critically ill children

被引:18
作者
Fung, France W. [1 ,2 ,3 ]
Jacobwitz, Marin [1 ]
Parikh, Darshana S. [1 ,4 ]
Vala, Lisa [5 ]
Donnelly, Maureen [5 ]
Fan, Jiaxin [6 ]
Xiao, Rui [6 ]
Topjian, Alexis A. [4 ,7 ]
Abend, Nicholas S. [1 ,2 ,3 ,5 ,6 ,7 ]
机构
[1] Childrens Hosp Philadelphia, Dept Pediat, Div Neurol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pediat, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Childrens Hosp Philadelphia, Dept Anesthesia & Crit Care Med, Philadelphia, PA 19104 USA
[5] Childrens Hosp Philadelphia, Dept Neurodiagnost, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Dept Anesthesia & Crit Care, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
critical care; EEG monitoring; electroencephalogram; pediatric; seizure; status epilepticus; NONCONVULSIVE STATUS EPILEPTICUS; TRAUMATIC BRAIN-INJURY; CONTINUOUS VIDEO-EEG; ELECTROGRAPHIC SEIZURES; CONSENSUS STATEMENT; COMATOSE CHILDREN; ADULTS; COMMON; PROBABILITY; TERMINOLOGY;
D O I
10.1111/epi.16448
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective Electroencephalographic seizures (ESs) are common in encephalopathic critically ill children, but ES identification with continuous electroencephalography (EEG) monitoring (CEEG) is resource-intense. We aimed to develop an ES prediction model that would enable clinicians to stratify patients by ES risk and optimally target limited CEEG resources. We aimed to determine whether incorporating data from a screening EEG yielded better performance characteristics than models using clinical variables alone. Methods We performed a prospective observational study of 719 consecutive critically ill children with acute encephalopathy undergoing CEEG in the pediatric intensive care unit of a quaternary care institution between April 2017 and February 2019. We identified clinical and EEG risk factors for ES. We evaluated model performance with area under the receiver-operating characteristic (ROC) curve (AUC), validated the optimal model with the highest AUC using a fivefold cross-validation, and calculated test characteristics emphasizing high sensitivity. We applied the optimal operating slope strategy to identify the optimal cutoff to define whether a patient should undergo CEEG. Results The incidence of ES was 26%. Variables associated with increased ES risk included age, acute encephalopathy category, clinical seizures prior to CEEG initiation, EEG background, and epileptiform discharges. Combining clinical and EEG variables yielded better model performance (AUC 0.80) than clinical variables alone (AUC 0.69; P < .01). At a 0.10 cutoff selected to emphasize sensitivity, the optimal model had a sensitivity of 92%, specificity of 37%, positive predictive value of 34%, and negative predictive value of 93%. If applied, the model would limit 29% of patients from undergoing CEEG while failing to identify 8% of patients with ES. Significance A model employing readily available clinical and EEG variables could target limited CEEG resources to critically ill children at highest risk for ES, making CEEG-guided management a more viable neuroprotective strategy.
引用
收藏
页码:498 / 508
页数:11
相关论文
共 50 条
  • [41] Clinical and Electroencephalographic Predictors of Seizures and Status Epilepticus in 12,450 Critically Ill Adults: A Retrospective Cohort Study
    Snider, Samuel
    Fong, Michael W. K. M.
    Nolan, Neal
    Ruiz, Andres Rodriguez
    Wang, Wei
    LaRoche, Suzette
    Hirsch, Lawrence
    Lee, Jong
    CRITICAL CARE MEDICINE, 2023, 51 (08) : 1000 - 1010
  • [42] Brain network properties of clinical versus subclinical seizures among critically ill children
    Koster, Laura K.
    Zamyadi, Rouzbeh
    Yan, Luowei
    Payne, Eric T.
    McBain, Kristin L.
    Dunkley, Benjamin T.
    Hahn, Cecil D.
    CLINICAL NEUROPHYSIOLOGY, 2023, 149 : 33 - 41
  • [43] Independent risk factors for seizures in critically ill patients on continuous EEG
    Naves, Pedro V. F.
    Caboclo, Luis O.
    EPILEPTIC DISORDERS, 2022, 24 (02) : 287 - 294
  • [44] The Role of Electroencephalography in the Prognostication of Clinical Outcomes in Critically Ill Children: A Review
    Gilman, Carley A.
    Wusthoff, Courtney J.
    Guerriero, Rejean M.
    CHILDREN-BASEL, 2022, 9 (09):
  • [45] Melatonin in Critically Ill Children
    Foster, Jennifer Ruth
    JOURNAL OF PEDIATRIC INTENSIVE CARE, 2016, 5 (04) : 172 - 181
  • [46] Electrographic Status Epilepticus Is Associated With Modality and Worse Short-Term Outcome in Critically Ill Children
    Topjian, Alexis A.
    Gutierrez-Colina, Ana M.
    Sanchez, Sarah M.
    Berg, Robert A.
    Friess, Stuart H.
    Dlugos, Dennis J.
    Abend, Nicholas S.
    CRITICAL CARE MEDICINE, 2013, 41 (01) : 215 - 223
  • [47] Can Lactate Clearance Predict Mortality in Critically Ill Children?
    Moustafa, Azza A.
    Elhadidi, Abeer S.
    El-Nagar, Mona A.
    Hassouna, Hadir M.
    JOURNAL OF PEDIATRIC INTENSIVE CARE, 2023, 12 (02) : 112 - 117
  • [48] Management of seizures in critically ill patients
    Varelas P.N.
    Mirski M.A.
    Current Neurology and Neuroscience Reports, 2004, 4 (6) : 489 - 496
  • [49] Electrographic status epilepticus and long-term outcome in critically ill children
    Wagenman, Katherine L.
    Blake, Taylor P.
    Sanchez, Sarah M.
    Schultheis, Maria T.
    Radcliffe, Jerilynn
    Berg, Robert A.
    Dlugos, Dennis J.
    Topjian, Alexis A.
    Abend, Nicholas S.
    NEUROLOGY, 2014, 82 (05) : 396 - 404
  • [50] Benzodiazepines and Development of Delirium in Critically Ill Children: Estimating the Causal Effect*
    Mody, Kalgi
    Kaur, Savneet
    Mauer, Elizabeth A.
    Gerber, Linda M.
    Greenwald, Bruce M.
    Silver, Gabrielle
    Traube, Chani
    CRITICAL CARE MEDICINE, 2018, 46 (09) : 1486 - 1491