Development of a model to predict electroencephalographic seizures in critically ill children

被引:18
|
作者
Fung, France W. [1 ,2 ,3 ]
Jacobwitz, Marin [1 ]
Parikh, Darshana S. [1 ,4 ]
Vala, Lisa [5 ]
Donnelly, Maureen [5 ]
Fan, Jiaxin [6 ]
Xiao, Rui [6 ]
Topjian, Alexis A. [4 ,7 ]
Abend, Nicholas S. [1 ,2 ,3 ,5 ,6 ,7 ]
机构
[1] Childrens Hosp Philadelphia, Dept Pediat, Div Neurol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pediat, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Childrens Hosp Philadelphia, Dept Anesthesia & Crit Care Med, Philadelphia, PA 19104 USA
[5] Childrens Hosp Philadelphia, Dept Neurodiagnost, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Dept Anesthesia & Crit Care, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
critical care; EEG monitoring; electroencephalogram; pediatric; seizure; status epilepticus; NONCONVULSIVE STATUS EPILEPTICUS; TRAUMATIC BRAIN-INJURY; CONTINUOUS VIDEO-EEG; ELECTROGRAPHIC SEIZURES; CONSENSUS STATEMENT; COMATOSE CHILDREN; ADULTS; COMMON; PROBABILITY; TERMINOLOGY;
D O I
10.1111/epi.16448
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective Electroencephalographic seizures (ESs) are common in encephalopathic critically ill children, but ES identification with continuous electroencephalography (EEG) monitoring (CEEG) is resource-intense. We aimed to develop an ES prediction model that would enable clinicians to stratify patients by ES risk and optimally target limited CEEG resources. We aimed to determine whether incorporating data from a screening EEG yielded better performance characteristics than models using clinical variables alone. Methods We performed a prospective observational study of 719 consecutive critically ill children with acute encephalopathy undergoing CEEG in the pediatric intensive care unit of a quaternary care institution between April 2017 and February 2019. We identified clinical and EEG risk factors for ES. We evaluated model performance with area under the receiver-operating characteristic (ROC) curve (AUC), validated the optimal model with the highest AUC using a fivefold cross-validation, and calculated test characteristics emphasizing high sensitivity. We applied the optimal operating slope strategy to identify the optimal cutoff to define whether a patient should undergo CEEG. Results The incidence of ES was 26%. Variables associated with increased ES risk included age, acute encephalopathy category, clinical seizures prior to CEEG initiation, EEG background, and epileptiform discharges. Combining clinical and EEG variables yielded better model performance (AUC 0.80) than clinical variables alone (AUC 0.69; P < .01). At a 0.10 cutoff selected to emphasize sensitivity, the optimal model had a sensitivity of 92%, specificity of 37%, positive predictive value of 34%, and negative predictive value of 93%. If applied, the model would limit 29% of patients from undergoing CEEG while failing to identify 8% of patients with ES. Significance A model employing readily available clinical and EEG variables could target limited CEEG resources to critically ill children at highest risk for ES, making CEEG-guided management a more viable neuroprotective strategy.
引用
收藏
页码:498 / 508
页数:11
相关论文
共 50 条
  • [21] Electroencephalography monitoring in critically ill children: Current practice and implications for future study design
    Sanchez, Sarah M.
    Arndt, Daniel H.
    Carpenter, Jessica L.
    Chapman, Kevin E.
    Cornett, Karen M.
    Dlugos, Dennis J.
    Gallentine, William B.
    Giza, Christopher C.
    Goldstein, Joshua L.
    Hahn, Cecil D.
    Lerner, Jason T.
    Loddenkemper, Tobias
    Matsumoto, Joyce H.
    McBain, Kristin
    Nash, Kendall B.
    Payne, Eric
    Fernandez, Ivan Sanchez
    Shults, Justine
    Williams, Korwyn
    Yang, Amy
    Abend, Nicholas S.
    EPILEPSIA, 2013, 54 (08) : 1419 - 1427
  • [22] Current Status of Continuous Electroencephalographic Monitoring in Critically III Children
    Bozarth, Xiuhua L.
    McGuire, John
    Novotny, Edward
    PEDIATRIC NEUROLOGY, 2019, 101 : 11 - 17
  • [23] Safety of intravenous lacosamide in critically ill children
    Welsh, Sarah S.
    Lin, Nan
    Topjian, Alexis A.
    Abend, Nicholas S.
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 52 : 76 - 80
  • [24] Electrographic seizures and status epilepticus in critically ill children and neonates with encephalopathy
    Abend, Nicholas S.
    Wusthoff, Courtney J.
    Goldberg, Ethan M.
    Dlugos, Dennis J.
    LANCET NEUROLOGY, 2013, 12 (12) : 1170 - 1179
  • [25] A Review of Long-term EEG Monitoring in Critically Ill Children With Hypoxic-Ischemic Encephalopathy, Congenital Heart Disease, ECMO, and Stroke
    Abend, Nicholas S.
    Dlugos, Dennis J.
    Clancy, Robert R.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2013, 30 (02) : 134 - 142
  • [26] Predictors of nonconvulsive seizures among critically ill children
    McCoy, Blathnaid
    Sharma, Rohit
    Ochi, Ayako
    Go, Cristina
    Otsubo, Hiroshi
    Hutchison, James S.
    Atenafu, Eshetu G.
    Hahn, Cecil D.
    EPILEPSIA, 2011, 52 (11) : 1973 - 1978
  • [27] Use of EEG in critically ill children and neonates in the United States of America
    Gainza-Lein, Marina
    Sanchez Fernandez, Ivan
    Loddenkemper, Tobias
    JOURNAL OF NEUROLOGY, 2017, 264 (06) : 1165 - 1173
  • [28] Epileptic seizures in critically ill patients
    Stasiukyniene, Virginija
    Pilvinis, Vidas
    Reingardiene, Dagmara
    Janauskaite, Liuda
    MEDICINA-LITHUANIA, 2009, 45 (06): : 501 - 507
  • [29] Continuous Electroencephalographic Monitoring in Critically Ill Patients: Indications, Limitations, and Strategies
    Sutter, Raoul
    Stevens, Robert D.
    Kaplan, Peter W.
    CRITICAL CARE MEDICINE, 2013, 41 (04) : 1124 - 1132
  • [30] Periodic Discharges in Critically Ill Children: Predictors and Outcome
    Fung, France W.
    Parikh, Darshana S.
    Massey, Shavonne L.
    Fitzgerald, Mark P.
    Vala, Lisa
    Donnelly, Maureen
    Jacobwitz, Marin
    Kessler, Sudha K.
    Xiao, Rui
    Topjian, Alexis A.
    Abend, Nicholas S.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2024, 41 (04) : 297 - 304