Influences of secondary gas injection pattern on fluidized bed combustion process: A CFD-DEM study

被引:26
|
作者
Hu, Chenshu [1 ]
Luo, Kun [1 ]
Zhou, Mengmeng [2 ]
Lin, Junjie [1 ]
Kong, Dali [1 ]
Fan, Jianren [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Monash Univ, Dept Chem Engn, ARC Res Hub Computat Particle Technol, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Bubbling fluidized bed; Secondary gas injection; CFD-DEM; Coal combustion; Hot spot; SCALE-UP; SIMULATION; PARTICLES; MODEL; FLOW; CHAR; COAL; VALIDATION; PARAMETERS; RISER;
D O I
10.1016/j.fuel.2020.117314
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Computational fluid dynamics coupled with the discrete element method (CFD-DEM) is applied to study coal combustion in a lab-scale bubbling fluidized bed. The predictions in terms of outlet gas compositions and temperature profiles are compared with the experimental measurements in the literature, and a reasonable agreement is achieved. The temporal and spatial properties of the coal combustion process are then investigated from the particle level, and the influences of the secondary gas injection parameters, including the secondary gas ratio, the jetting velocity, and the injection height are demonstrated. The results indicate that each coal particle has different entrainment behaviors, heating process, and chemical reactions, and the secondary gas injection pattern significantly influences the mixing between the oxygen and coal particles. The increase of the secondary gas ratio enhances the gas temperature fluctuation, resulting in severe hot spots which are undesirable in fluidized bed combustors. The typical formation process of a hot spot is further captured and analyzed. It is revealed that the hot spot is mainly caused by the violent combustion of volatile gas in the gas bubbles. These results provide valuable insights regarding the influence of the secondary gas injection and the bubbles on chemical reactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Study on the char combustion in a fluidized bed by CFD-DEM simulations: Influences of fuel properties
    Xie, Jun
    Zhong, Wenqi
    Shao, Yingjuan
    POWDER TECHNOLOGY, 2021, 394 : 20 - 34
  • [2] CFD-DEM modeling of oxy-char combustion in a fluidized bed
    Lian, Guoqing
    Zhong, Wenqi
    POWDER TECHNOLOGY, 2022, 407
  • [3] Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study
    Hu, Chenshu
    Luo, Kun
    Wang, Shuai
    Sun, Liyan
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 195 : 693 - 706
  • [4] Effects of gas composition and operating pressure on the heat transfer in an oxy-fuel fluidized bed: A CFD-DEM study
    Lian, Guoqing
    Zhong, Wenqi
    Liu, Xuejiao
    CHEMICAL ENGINEERING SCIENCE, 2022, 249
  • [5] Coupling CFD-DEM with cohesive force and chemical reaction sub-models for biomass combustion in a fluidized bed
    Lian, Guoqing
    Zhong, Wenqi
    FUEL, 2023, 350
  • [6] CFD-DEM modeling and validation of solids drying in a gas-fluidized bed
    de Munck, M. J. A.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2024, 291
  • [7] Mixing of secondary gas injection in a bubbling fluidized bed
    Li, Tingwen
    Pougatch, Konstantin
    Salcudean, Martha
    Grecov, Dana
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2009, 87 (11A) : 1451 - 1465
  • [8] Development and verification of coarse-grain CFD-DEM for nonspherical particles in a gas-solid fluidized bed
    Zhou, Lianyong
    Ma, Huaqing
    Liu, Zihan
    Zhao, Yongzhi
    AICHE JOURNAL, 2022, 68 (11)
  • [9] A detailed gas-solid fluidized bed comparison study on CFD-DEM coarse-graining techniques
    de Munck, M. J. A.
    van Gelder, J. B.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2023, 269
  • [10] CFD-DEM Study of heat and mass transfer of ellipsoidal particles in fluidized bed dryers
    Handayani, Sri Utami
    Wahyudi, Hadi
    Agustina, Sri
    Yulianto, Mohamad Endy
    Aryanto, Hermawan Dwi
    POWDER TECHNOLOGY, 2023, 425