A priori error estimates of Adams-Bashforth discontinuous Galerkin methods for scalar nonlinear conservation laws

被引:1
作者
Puelz, Charles [1 ]
Riviere, Beatrice [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, 6100 Main MS-134, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
discontinuous Galerkin; error estimates; hyperbolic conservation law; FINITE-ELEMENT-METHOD; BLOOD-FLOW; SMOOTH SOLUTIONS; SYMMETRIZABLE SYSTEMS; WAVE-PROPAGATION; NETWORK; 1-D;
D O I
10.1515/jnma-2017-0011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show theoretical convergence of a second-order Adams-Bashforth discontinuous Galerkin method for approximating smooth solutions to scalar nonlinear conservation laws with E-fluxes. A priori error estimates are also derived for a first-order forward Euler discontinuous Galerkin method. Rates are optimal in time and suboptimal in space; they are valid under a CFL condition.
引用
收藏
页码:151 / 172
页数:22
相关论文
共 26 条
[1]   Reduced modelling of blood flow in the cerebral circulation:: Coupling 1-D, 0-D and cerebral auto-regulation models [J].
Alastruey, J. ;
Moore, S. M. ;
Parker, K. H. ;
David, T. ;
Peiro, J. ;
Sherwin, S. J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) :1061-1067
[2]  
[Anonymous], 2010, FUNDAMENTAL PRINCIPL
[3]  
[Anonymous], 2011, MATH ASPECTS DISCONT
[4]   A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling [J].
Boileau, Etienne ;
Nithiarasu, Perumal ;
Blanco, Pablo J. ;
Mueller, Lucas O. ;
Fossan, Fredrik Eikeland ;
Hellevik, Leif Rune ;
Donders, Wouter P. ;
Huberts, Wouter ;
Willemet, Marie ;
Alastruey, Jordi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2015, 31 (10) :1-33
[5]   Descending aorta subject-specific one-dimensional model validated against in vivo data [J].
Bollache, E. ;
Kachenoura, N. ;
Redheuil, A. ;
Frouin, F. ;
Mousseaux, E. ;
Recho, P. ;
Lucor, D. .
JOURNAL OF BIOMECHANICS, 2014, 47 (02) :424-431
[6]   Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels [J].
Canic, S ;
Kim, EH .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (14) :1161-1186
[7]  
Cascaval R. C., 2016, J FLUID FLOW, V3
[8]   THE RUNGE-KUTTA LOCAL PROJECTION RHO-1-DISCONTINUOUS-GALERKIN FINITE-ELEMENT METHOD FOR SCALAR CONSERVATION-LAWS [J].
COCKBURN, B ;
SHU, CW .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (03) :337-361
[9]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[10]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435