Telomerase recognizes G-quadruplex and linear DNA as distinct substrates

被引:33
作者
Oganesian, Liana
Graham, Mark E.
Robinson, Phillip J.
Bryan, Tracy M.
机构
[1] Childrens Med Res Inst, Westmead, NSW 2145, Australia
[2] Univ Sydney, Sydney, NSW 2006, Australia
基金
英国惠康基金;
关键词
D O I
10.1021/bi700993q
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomeric DNA can assemble into a nonlinear, higher-order conformation known as a G-quadruplex. Here, we demonstrate by electrospray ionization mass spectrometry that the two repeat telomeric sequence d(TGGGGTTGGGGT) from Tetrahymena thermophila gives rise to a novel parallel four-stranded G-quadruplex in the presence of sodium. The G-quadruplex directly interacts with the catalytic subunit of Tetrahymena telomerase (TERT) with micromolar affinity, and the presence of telomerase RNA is not obligatory for this interaction. Both N- and C-terminal halves of TERT bind the G-quadruplex independently. This G-quadruplex is a robust substrate for both recombinant and cell extract-derived telomerase in vitro. Furthermore, the G-quadruplex weakens the affinity of wild-type telomerase for the incoming nucleotide (dTTP) and likely perturbs the nucleotide binding pocket of the enzyme. In agreement with this, a lysine to alanine substitution at amino acid 538 (K538A) within motif I of TERT dramatically reduces the ability of telomerase to extend G-quadruplex but not linear DNA. The K538A mutant retains binding affinity for the quadruplex. This suggests that telomerase undergoes changes in conformation in its active site to specifically accommodate binding and subsequent extension of G-quadruplex DNA. We propose that telomerase recognizes G-quadruplex DNA as a substrate that is distinct from linear DNA.
引用
收藏
页码:11279 / 11290
页数:12
相关论文
共 43 条
[1]   Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution [J].
Ambrus, Attila ;
Chen, Ding ;
Dai, Jixun ;
Bialis, Tiffanie ;
Jones, Roger A. ;
Yang, Danzhou .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2723-2735
[2]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[3]   TANDEMLY REPEATED SEQUENCE AT TERMINI OF EXTRACHROMOSOMAL RIBOSOMAL-RNA GENES IN TETRAHYMENA [J].
BLACKBURN, EH ;
GALL, JG .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 120 (01) :33-53
[4]   THE MOLECULAR-STRUCTURE OF CENTROMERES AND TELOMERES [J].
BLACKBURN, EH ;
SZOSTAK, JW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1984, 53 :163-194
[5]   A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24199-24207
[6]   Tetrahymena telomerase is active as a monomer [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (12) :4794-4804
[7]   Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR CELL, 2000, 6 (02) :493-499
[8]   The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex [J].
Collins, K ;
Gandhi, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8485-8490
[9]   T-loops and the origin of telomeres [J].
de Lange, T .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (04) :323-329
[10]   N-terminal domain of yeast telomerase reverse transcriptase: Recruitment of Est3p to the telomerase complex [J].
Friedman, KL ;
Heit, JJ ;
Long, DM ;
Cech, TR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (01) :1-13