Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles

被引:3
|
作者
Zhang, Wenfei [1 ]
Zhou, Qulan [1 ]
Qi, Ji [2 ]
Li, Na [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] China Mobile Syst Integrat Co Ltd, Beijing 100052, Peoples R China
关键词
Carbon dioxide; Electrocatalysis; Methanol; Cuprous oxide film; Zinc oxide nanoparticle; ELECTROCHEMICAL REDUCTION; METHANOL SYNTHESIS; PHOTOCATALYTIC PROPERTY; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTRODES; EFFICIENCY; CONVERSION; GAS;
D O I
10.1007/s11144-021-02047-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu2O films were prepared using an improved solution immersion method, whereas ZnO/Cu2O films were prepared using an electrodeposition method. Then, the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were used to reduce CO2 to CH3OH. The crystal structure, morphology, particle size, and specific surface area of pure Cu2O films prepared under different immersion times and ZnO/Cu2O films prepared under different deposition times and Zn2+ concentrations were analyzed using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The electrolytic activity of the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were studied. Under the same reaction conditions, the ZnO/Cu2O film electrode with the Zn2+ concentration of 0.05 M and the deposition time of 30 min had the highest total CH3OH yield of 315.656 mu mol/cm(2) and the fastest formation rate of 52.609 mu mol/(cm(2) h), and its faradaic efficiency was 45%, which was remarkably higher than that of pure Cu2O film electrodes under the same reaction conditions. This study highlighted that ZnO nanoparticles had a very good promotion of electrolytic CO2 reduction on Cu2O film.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [31] CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
    Li, Christina W.
    Kanan, Matthew W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (17) : 7231 - 7234
  • [32] Ag as an Electron Mediator in Porous Cu2O Nanostructures for Photocatalytic CO2 Reduction to CO
    Ding, Shihao
    Bai, Xiaohe
    Cui, Lingkai
    Shen, Qianqian
    Zhang, Xueli
    Jia, Husheng
    Xue, Jinbo
    ACS APPLIED NANO MATERIALS, 2023, 6 (12) : 10539 - 10550
  • [33] Electrocatalytic Pathways and Efficiency of Cuprous Oxide (Cu2O) Surfaces in CO2 Electrochemical Reduction (CO2ER) to Methanol: A Computational Approach
    Laghari, Zubair Ahmed
    Yahya, Wan Zaireen Nisa
    Mohammed, Sulafa Abdalmageed Saadaldeen
    Bustam, Mohamad Azmi
    CATALYSTS, 2025, 15 (02)
  • [34] Electrocatalytic reduction of CO2 to CO by monodisperse Au nanoparticles
    Zhu, Wenlei
    Metin, Onder
    Wright, Chritopher
    Sun, Shouheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [35] Photoelectrocatalytic Reduction of CO2 to CO via Cu2O/C/PTFE Nanowires Photocathodes
    Zhang, Xun
    Wang, Jingkun
    Liu, Yuliang
    Sun, Jidong
    Xu, Bingshe
    Li, Tianbao
    CHEMPHOTOCHEM, 2024, 8 (10):
  • [36] Electrocatalytic reduction of CO2 on chiral Cu surfaces
    Fang, Yuxi
    Han, Lu
    Che, Shunai
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2023, 42 (08)
  • [37] Electrocatalytic behaviors of metal nanoparticles for CO2 reduction
    Lee, Yongjin
    Im, SangHyeok
    Lee, Dongil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [38] Thermal Stability of Cu and Cu2O Nanoparticles in a Polyimide Film
    Choi, Jae-Youn
    Dong, Wenguo
    Choi, Dong Joo
    Yoon, Chong S.
    Kim, Young-Ho
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2008, 8 (09) : 4822 - 4825
  • [40] Electrocatalytic reduction of CO2 over Pd nanoparticles
    Wang, Guoxiong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250