Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles

被引:3
|
作者
Zhang, Wenfei [1 ]
Zhou, Qulan [1 ]
Qi, Ji [2 ]
Li, Na [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] China Mobile Syst Integrat Co Ltd, Beijing 100052, Peoples R China
关键词
Carbon dioxide; Electrocatalysis; Methanol; Cuprous oxide film; Zinc oxide nanoparticle; ELECTROCHEMICAL REDUCTION; METHANOL SYNTHESIS; PHOTOCATALYTIC PROPERTY; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTRODES; EFFICIENCY; CONVERSION; GAS;
D O I
10.1007/s11144-021-02047-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu2O films were prepared using an improved solution immersion method, whereas ZnO/Cu2O films were prepared using an electrodeposition method. Then, the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were used to reduce CO2 to CH3OH. The crystal structure, morphology, particle size, and specific surface area of pure Cu2O films prepared under different immersion times and ZnO/Cu2O films prepared under different deposition times and Zn2+ concentrations were analyzed using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The electrolytic activity of the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were studied. Under the same reaction conditions, the ZnO/Cu2O film electrode with the Zn2+ concentration of 0.05 M and the deposition time of 30 min had the highest total CH3OH yield of 315.656 mu mol/cm(2) and the fastest formation rate of 52.609 mu mol/(cm(2) h), and its faradaic efficiency was 45%, which was remarkably higher than that of pure Cu2O film electrodes under the same reaction conditions. This study highlighted that ZnO nanoparticles had a very good promotion of electrolytic CO2 reduction on Cu2O film.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [21] Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O
    Malik, M. Irfan
    Malaibari, Zuhair Omar
    Atieh, Muataz
    Abussaud, Basim
    CHEMICAL ENGINEERING SCIENCE, 2016, 152 : 468 - 477
  • [22] Plasmonic Energetic Electrons Drive CO2 Reduction on Defective Cu2O
    Le, Tien
    Salavati-fard, Taha
    Wang, Bin
    ACS CATALYSIS, 2023, 13 (09) : 6328 - 6337
  • [23] Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction
    Schreier, Marcel
    Luo, Jingshan
    Gao, Peng
    Moehl, Thomas
    Mayer, Matthew T.
    Graetzel, Michael
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (06) : 1938 - 1946
  • [24] Structural evolution of Cu2O nanocube electrocatalysts for the CO2 reduction reaction
    Ren, Qingye
    Zhang, Na
    Dong, Zejian
    Zhang, Lifeng
    Chen, Xing
    Luo, Langli
    NANO ENERGY, 2023, 106
  • [25] Photocatalytic Reduction of CO2 to Methanol by Cu2O/TiO2 Heterojunctions
    Cheng, S. -p.
    Wei, L. -w.
    Wang, H. -Paul
    SUSTAINABILITY, 2022, 14 (01)
  • [26] Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2
    Tan, Xinyi
    Yu, Chang
    Zhao, Changtai
    Huang, Huawei
    Yao, Xiuchao
    Han, Xiaotong
    Guo, Wei
    Cui, Song
    Huang, Hongling
    Qiu, Jieshan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9904 - 9910
  • [27] Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects
    de Brito, Juliana Ferreira
    Araujo, Angela Regina
    Rajeshwar, Krishnan
    Boldrin Zanoni, Maria Valnice
    CHEMICAL ENGINEERING JOURNAL, 2015, 264 : 302 - 309
  • [28] Photosensitivity of ZnO/Cu2O thin film heterojunction
    Lv, Peiwei
    Lin, Limei
    Zheng, Weifeng
    Zheng, Mingzhi
    Lai, Fachun
    OPTIK, 2013, 124 (17): : 2654 - 2657
  • [29] Controllable preparation of Cu2O/Cu-CuTCPP MOF heterojunction for enhanced electrocatalytic CO2 reduction to C2H4
    Sun, Miao
    Xu, Xiao
    Min, Shihao
    He, Jiaxin
    Li, Kun
    Kang, Longtian
    APPLIED SURFACE SCIENCE, 2024, 659
  • [30] Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4
    Ning, Hui
    Wang, Xiaoshan
    Wang, Wenhang
    Mao, Qinhu
    Yang, Zhongxue
    Zhao, Qingshan
    Song, Yan
    Wu, Mingbo
    CARBON, 2019, 146 : 218 - 223