Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles

被引:3
|
作者
Zhang, Wenfei [1 ]
Zhou, Qulan [1 ]
Qi, Ji [2 ]
Li, Na [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] China Mobile Syst Integrat Co Ltd, Beijing 100052, Peoples R China
关键词
Carbon dioxide; Electrocatalysis; Methanol; Cuprous oxide film; Zinc oxide nanoparticle; ELECTROCHEMICAL REDUCTION; METHANOL SYNTHESIS; PHOTOCATALYTIC PROPERTY; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTRODES; EFFICIENCY; CONVERSION; GAS;
D O I
10.1007/s11144-021-02047-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu2O films were prepared using an improved solution immersion method, whereas ZnO/Cu2O films were prepared using an electrodeposition method. Then, the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were used to reduce CO2 to CH3OH. The crystal structure, morphology, particle size, and specific surface area of pure Cu2O films prepared under different immersion times and ZnO/Cu2O films prepared under different deposition times and Zn2+ concentrations were analyzed using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The electrolytic activity of the pure Cu2O film electrodes and ZnO/Cu2O film electrodes were studied. Under the same reaction conditions, the ZnO/Cu2O film electrode with the Zn2+ concentration of 0.05 M and the deposition time of 30 min had the highest total CH3OH yield of 315.656 mu mol/cm(2) and the fastest formation rate of 52.609 mu mol/(cm(2) h), and its faradaic efficiency was 45%, which was remarkably higher than that of pure Cu2O film electrodes under the same reaction conditions. This study highlighted that ZnO nanoparticles had a very good promotion of electrolytic CO2 reduction on Cu2O film.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [1] Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles
    Wenfei Zhang
    Qulan Zhou
    Ji Qi
    Na Li
    Reaction Kinetics, Mechanisms and Catalysis, 2021, 134 : 243 - 257
  • [2] Supramolecular Engineering to Improve Electrocatalytic CO2 Reduction Activity of Cu2O
    Zhang, Ya
    Zhang, Xiao-Yu
    Chen, Kai
    Sun, Wei-Yin
    CHEMSUSCHEM, 2021, 14 (08) : 1847 - 1852
  • [3] Electrochemical Reduction of CO2 using Supported Cu2O Nanoparticles
    Bugayong, J.
    Griffin, G. L.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02): : 81 - 89
  • [4] Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction
    Azenha, Catia
    Mateos-Pedrero, Cecilia
    Lagarteira, Tiago
    Mendes, Adelio M.
    JOURNAL OF CO2 UTILIZATION, 2023, 68
  • [5] Facet Dopant Regulation of Cu2O Boosts Electrocatalytic CO2 Reduction to Formate
    Ma, Xintao
    Zhang, Yinggan
    Fan, Tingting
    Wei, Diye
    Huang, Zongyi
    Zhang, Zhihao
    Zhang, Zheng
    Dong, Yunyun
    Hong, Qiming
    Chen, Zhou
    Yi, Xiaodong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (16)
  • [6] Effects of *CO Coverage on Selective Electrocatalytic Reduction of CO2 to Ethylene over Cu2O with Undercoordinated Cu Sites
    Duan, Ruonan
    Luo, Laixing
    Qin, Wu
    Xiao, Xianbin
    Zhou, Rhonin
    Zheng, Zongming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (49): : 20878 - 20885
  • [7] Al-Doped Octahedral Cu2O Nanocrystal for Electrocatalytic CO2 Reduction to Produce Ethylene
    Li, Sanxiu
    Sha, Xuelan
    Gao, Xiafei
    Peng, Juan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (16)
  • [8] Study on photoelectrochemical CO2 reduction over Cu2O
    Akbar, Muhammad Bilal
    Wang, Yanjie
    Zhang, Xuehua
    He, Tao
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2023, 437
  • [9] Unraveling the Influence of Shell Thickness in Organic Functionalized Cu2O Nanoparticles on C2+ Products Distribution in Electrocatalytic CO2 Reduction
    Hu, Jiajun
    Osella, Silvio
    Albero, Josep
    Garcia, Hermenegildo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (44)
  • [10] Stabilization of Cu2O catalyst via strong electronic interaction for selective electrocatalytic CO2 reduction to ethanol
    Wang, Ruifeng
    Liu, Yuchang
    Kong, Yafen
    Chen, Qizhi
    Zhao, Shuangliang
    CHEMICAL ENGINEERING JOURNAL, 2024, 499