BAYESIAN INFORMATION CRITERION FOR MULTIDIMENSIONAL SINUSOIDAL ORDER SELECTION

被引:0
作者
Xiong, Jie [1 ]
Liu, Kefei [2 ]
da Costa, Joao Paulo C. L. [3 ,4 ,5 ]
Wang, Wen-Qin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun Engn, Chengdu, Sichuan, Peoples R China
[2] Indiana Univ Sch Med, Indianapolis, IN 46202 USA
[3] Univ Brasilia, Dept Elect Engn, Brasilia, DF, Brazil
[4] Fraunhofer IIS, Inst Integrated Circuits, Erlangen, Germany
[5] Ilmenau Univ Technol, Inst Informat Technol, Ilmenau, Germany
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
关键词
Bayesian information criterion; model order selection; maximum likelihood estimation; frequency estimation; multidimensional signal processing; HARMONIC RETRIEVAL PROBLEMS; IDENTIFIABILITY;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Detecting the sinusoidal order is a prerequisite step for parametric multidimensional sinusoidal frequency estimation methods, whose applications range from radar and wireless communications to nuclear magnetic resonance spectroscopy. Although the Bayesian information criterion (BIC) has been commonly applied for model order selection, its application to sinusoidal order estimation is recent. By means of estimation of Fisher information matrix, we extend the 1-D BIC to multidimensional case for multidimensional sinusoidal order selection. The multidimensional BIC is shown in simulations to outperform the state-of-the-art algorithms in terms of probability of correct detection.
引用
收藏
页码:3106 / 3110
页数:5
相关论文
共 20 条
  • [1] Multi-dimensional model order selection
    Carvalho Lustosa da Costa, Joao Paulo
    Roemer, Florian
    Haardt, Martin
    de Sousa, Rafael Timoteo, Jr.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [2] Asymptotic MAP criteria for model selection
    Djuric, PM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) : 2726 - 2735
  • [3] Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems
    Haardt, M
    Nossek, JA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) : 161 - 169
  • [4] Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems
    Haardt, Martin
    Roemer, Florian
    Del Galdo, Giovanni
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3198 - 3213
  • [5] Almost-sure identifiability of multidimensional harmonic retrieval
    Jiang, T
    Sidiropoulos, ND
    ten Berge, JMF
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (09) : 1849 - 1859
  • [6] A high-resolution technique for multidimensional NMR spectroscopy
    Li, YG
    Razavilar, J
    Liu, KJR
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (01) : 78 - 86
  • [7] An eigenvector-based approach for multidimensional frequency estimation with improved identifiability
    Liu, Jun
    Liu, Xiangqian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (12) : 4543 - 4556
  • [8] Detection of number of components in CANDECOMP/PARAFAC models via minimum description length
    Liu, Kefei
    da Costa, Joao Paulo C. L.
    So, Hing Cheung
    Huang, Lei
    Ye, Jieping
    [J]. DIGITAL SIGNAL PROCESSING, 2016, 51 : 110 - 123
  • [9] Multidimensional folding for sinusoidal order selection
    Liu, Kefei
    Huang, Lei
    So, Hing Cheung
    Ye, Jieping
    [J]. DIGITAL SIGNAL PROCESSING, 2016, 48 : 349 - 360
  • [10] Subspace techniques for multidimensional model order selection in colored noise
    Liu, Kefei
    da Costa, Joao Paulo C. L.
    So, Hing Cheung
    Huang, Lei
    [J]. SIGNAL PROCESSING, 2013, 93 (07) : 1976 - 1987