Gate-controlled generation of optical pulse trains using individual carbon nanotubes

被引:16
作者
Jiang, M. [1 ]
Kumamoto, Y. [1 ]
Ishii, A. [1 ]
Yoshida, M. [1 ]
Shimada, T. [1 ]
Kato, Y. K. [1 ]
机构
[1] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
EXCITONS; EMISSION;
D O I
10.1038/ncomms7335
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In single-walled carbon nanotubes, electron-hole pairs form tightly bound excitons because of limited screening. These excitons display a variety of interactions and processes that could be exploited for applications in nanoscale photonics and optoelectronics. Here we report on optical pulse-train generation from individual air-suspended carbon nanotubes under an application of square-wave gate voltages. Electrostatically induced carrier accumulation quenches photoluminescence, while a voltage sign reversal purges those carriers, resetting the nanotubes to become luminescent temporarily. Frequency-domain measurements reveal photoluminescence recovery with characteristic frequencies that increase with excitation laser power, showing that photoexcited carriers provide a self-limiting mechanism for pulsed emission. Time-resolved measurements directly confirm the presence of an optical pulse train synchronized to the gate voltage signal, and flexible control over pulse timing and duration is also demonstrated. These results identify an unconventional route for optical pulse generation and electrical-to-optical signal conversion, opening up new prospects for controlling light at the nanoscale.
引用
收藏
页数:5
相关论文
共 35 条
[21]  
Mueller T, 2010, NAT NANOTECHNOL, V5, P27, DOI [10.1038/NNANO.2009.319, 10.1038/nnano.2009.319]
[22]   Nonlinear Photoluminescence Excitation Spectroscopy of Carbon Nanotubes: Exploring the Upper Density Limit of One-Dimensional Excitons [J].
Murakami, Yoichi ;
Kono, Junichiro .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[23]   Band gap fluorescence from individual single-walled carbon nanotubes [J].
O'Connell, MJ ;
Bachilo, SM ;
Huffman, CB ;
Moore, VC ;
Strano, MS ;
Haroz, EH ;
Rialon, KL ;
Boul, PJ ;
Noon, WH ;
Kittrell, C ;
Ma, JP ;
Hauge, RH ;
Weisman, RB ;
Smalley, RE .
SCIENCE, 2002, 297 (5581) :593-596
[24]   OPTICAL-ABSORPTION AND SOMMERFELD FACTORS OF ONE-DIMENSIONAL SEMICONDUCTORS - AN EXACT TREATMENT OF EXCITONIC EFFECTS [J].
OGAWA, T ;
TAKAGAHARA, T .
PHYSICAL REVIEW B, 1991, 44 (15) :8138-8156
[25]   Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes [J].
Ohno, Yutaka ;
Iwasaki, Shinya ;
Murakami, Yoichi ;
Kishimoto, Shigeru ;
Maruyama, Shigeo ;
Mizutani, Takashi .
PHYSICAL REVIEW B, 2006, 73 (23)
[26]   Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes [J].
Perebeinos, Vasili ;
Avouris, Phaedon .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[27]   Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes [J].
Sarpkaya, Ibrahim ;
Zhang, Zhengyi ;
Walden-Newman, William ;
Wang, Xuesi ;
Hone, James ;
Wong, Chee W. ;
Strauf, Stefan .
NATURE COMMUNICATIONS, 2013, 4
[28]   Gate-Variable Light Absorption and Emission in a Semiconducting Carbon Nanotube [J].
Steiner, Mathias ;
Freitag, Marcus ;
Perebeinos, Vasili ;
Naumov, Anton ;
Small, Joshua P. ;
Bol, Ageeth A. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (10) :3477-3481
[29]   Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes [J].
Wang, F ;
Dukovic, G ;
Knoesel, E ;
Brus, LE ;
Heinz, TF .
PHYSICAL REVIEW B, 2004, 70 (24) :1-4
[30]   The optical resonances in carbon nanotubes arise from excitons [J].
Wang, F ;
Dukovic, G ;
Brus, LE ;
Heinz, TF .
SCIENCE, 2005, 308 (5723) :838-841