Combining binary classifiers for automatic cartilage segmentation in knee MRI

被引:0
|
作者
Folkesson, J [1 ]
Olsen, OF
Pettersen, P
Dam, E
Christiansen, C
机构
[1] IT Univ Copenhagen, Image Anal Grp, Copenhagen, Denmark
[2] Ctr Clin & Basic Res, Ballerup, Denmark
来源
COMPUTER VISION FOR BIOMEDICAL IMAGE APPLICATIONS, PROCEEDINGS | 2005年 / 3765卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a method for segmenting tibial and femoral medial cartilage in MR knee scans by combining two k Nearest Neighbors (kNN) classifiers for the cartilage classes with a rejection threshold for the background class. We show that with this threshold, two binary classifiers are sufficient compared to three binary classifiers in the traditional one-versus-all approach. We also show that the combination of binary classifiers produces better results than a kNN classifier that is trained to partition the voxels directly into three classes. The resulting sensitivity, specificity and Dice volume overlap of our method are 84.2%, 99.9% and 0.81 respectively. Compared to state-of-the-art segmentation methods, our method outperforms a fully automatic method and is comparable to a semi-automatic method.
引用
收藏
页码:230 / +
页数:3
相关论文
共 50 条
  • [41] A New Approach for Binary Feature Selection and Combining Classifiers
    Asaithambi, Asai
    Valev, Ventzeslav
    Krzyzak, Adam
    Zeljkovic, Vesna
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 681 - 687
  • [42] Combining Binary Classifiers for a Multiclass Problem with Differential Privacy
    Sazonova, Vera
    Matwin, Stan
    TRANSACTIONS ON DATA PRIVACY, 2014, 7 (01) : 51 - 70
  • [43] Automatic segmentation of the brain in MRI
    Atkins, M.S.
    Mackiewich, B.T.
    Lecture Notes in Computer Science, 1131
  • [44] Automatic segmentation of cardiac MRI
    Gering, DT
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 1, 2003, 2878 : 524 - 532
  • [45] Automatic segmentation of the brain in MRI
    Atkins, MS
    Mackiewich, BT
    VISUALIZATION IN BIOMEDICAL COMPUTING, 1996, 1131 : 241 - 246
  • [46] Automatic Segmentation of Wood Logs by Combining Detection and Segmentation
    Gutzeit, Enrico
    Voskamp, Joerg
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 252 - 261
  • [47] Automatic Tumor Segmentation using Machine Learning Classifiers
    Shrestha, Ujjwal
    Salari, Ezzatollah
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2018, : 153 - 158
  • [48] Evaluating Classifiers for Atherosclerotic Plaque Component Segmentation in MRI
    van Engelen, Arna
    de Bruijne, Marleen
    Schneider, Torben
    van Dijk, Anouk C.
    Kooi, M. Eline
    Hendrikse, Jeroen
    Nederveen, Aart
    Niessen, Wiro J.
    Botnar, Rene M.
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2017), 2017, 723 : 156 - 168
  • [49] Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee
    Fripp, Jurgen
    Crozier, Stuart
    Warfield, Simon K.
    Ourselin, Sebastien
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (06): : 1617 - 1631
  • [50] FULLY AUTOMATIC KNEE ARTICULAR CARTILAGE SEGMENTATION FROM MR IMAGES: MULTILEVEL IMAGE PROCESSING APPROACH
    Gandhamal, A. P.
    Talbar, S. N.
    Gajre, S. S.
    Hani, A. M.
    Razak, R.
    Kumar, D. D.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S447 - S448