Combining binary classifiers for automatic cartilage segmentation in knee MRI

被引:0
|
作者
Folkesson, J [1 ]
Olsen, OF
Pettersen, P
Dam, E
Christiansen, C
机构
[1] IT Univ Copenhagen, Image Anal Grp, Copenhagen, Denmark
[2] Ctr Clin & Basic Res, Ballerup, Denmark
来源
COMPUTER VISION FOR BIOMEDICAL IMAGE APPLICATIONS, PROCEEDINGS | 2005年 / 3765卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a method for segmenting tibial and femoral medial cartilage in MR knee scans by combining two k Nearest Neighbors (kNN) classifiers for the cartilage classes with a rejection threshold for the background class. We show that with this threshold, two binary classifiers are sufficient compared to three binary classifiers in the traditional one-versus-all approach. We also show that the combination of binary classifiers produces better results than a kNN classifier that is trained to partition the voxels directly into three classes. The resulting sensitivity, specificity and Dice volume overlap of our method are 84.2%, 99.9% and 0.81 respectively. Compared to state-of-the-art segmentation methods, our method outperforms a fully automatic method and is comparable to a semi-automatic method.
引用
收藏
页码:230 / +
页数:3
相关论文
共 50 条
  • [21] Combining Binary Classifiers with Imprecise Probabilities
    Destercke, Sebastien
    Quost, Benjamin
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, 2011, 7027 : 219 - 230
  • [22] Knee cartilage segmentation using active shape models and local binary patterns
    Gonzalez, German
    Escalante-Ramirez, Boris
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR MULTIMEDIA APPLICATIONS III, 2014, 9138
  • [23] Semi-automatic Segmentation of Knee Osteoarthritic Cartilage in Magnetic Resonance Images
    Marstal, Kasper
    Gudbergsen, Henrik
    Boesen, Mikael
    Kubassova, Olga
    Bouert, Rasmus
    Bliddal, Henning
    53RD INTERNATIONAL SYMPOSIUM ELMAR-2011, 2011, : 385 - 388
  • [24] Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks
    Gaj, Sibaji
    Yang, Mingrui
    Nakamura, Kunio
    Li, Xiaojuan
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (01) : 437 - 449
  • [25] Atlas of Classifiers for Brain MRI Segmentation
    Kodner, Boris
    Gordon, Shiri
    Goldberger, Jacob
    Raviv, Tammy Riklin
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 36 - 44
  • [26] AUTOMATIC KNEE CARTILAGE AND MENISCI SEGMENTATION FROM 3D-DESS MRI USING DEEP SEMI-SUPERVISED LEARNING
    Panfilov, E.
    Tiulpin, A.
    Juntunen, M.
    Casula, V.
    Nieminen, M.
    Saarakkala, S.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S390 - S391
  • [27] Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
    Heckemann, Rolf A.
    Hajnal, Joseph V.
    Aljabar, Paul
    Rueckert, Daniel
    Hammers, Alexander
    NEUROIMAGE, 2006, 33 (01) : 115 - 126
  • [28] Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint
    Liukkonen, Mimmi K.
    Mononen, Mika E.
    Tanska, Petri
    Saarakkala, Simo
    Nieminen, Miika T.
    Korhonen, Rami K.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 (13) : 1453 - 1463
  • [29] AUTOMATIC MULTI-ATLAS-BASED CARTILAGE SEGMENTATION FROM KNEE MR IMAGES
    Shan, Liang
    Charles, Cecil
    Niethammer, Marc
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1028 - 1031
  • [30] Femoral Cartilage Segmentation in Knee MRI Scans Using Two Stage Voxel Classification
    Prasoon, Adhish
    Igel, Christian
    Loog, Marco
    Lauze, Francois
    Dam, Erik B.
    Nielsen, Mads
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5469 - 5472