MOF decomposed for the preparation of Co3O4/N-doped carbon with excellent microwave absorption

被引:56
作者
Bai, Yi-Wen [1 ]
Shi, Guimei [1 ]
Gao, Jun [2 ]
Shi, Fa-Nian [1 ]
机构
[1] Shenyang Univ Technol, Sch Sci, 111 Shenliao West Rd, Shenyang 110870, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Qingdao 266590, Peoples R China
关键词
N-doped carbon; Co3O4; Composite; Metal organic framework; Annealing process; Microwave absorption; MAGNETIC GRAPHENE; BROAD-BAND; PERFORMANCE; COMPOSITE; NANOCOMPOSITES; LIGHTWEIGHT; FRAMEWORK; PERMITTIVITY; CONSTRUCTION; FABRICATION;
D O I
10.1016/j.jssc.2020.121401
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A composite of Co3O4/N-doped carbon (Co3O4/N-C) has been successfully fabricated from a MOF precursor by a facile hydrothermal route (150 degrees C) and subsequent annealing process a 700 degrees C under high vacuum conditions. The composite was confirmed to be Co3O4 by powder X-ray diffraction (XRD) techniques, while the morphology and components were observed via SEM and EDS. The participation of carbon was proved and the presence of minor N was also convinced by XPS spectra. The Raman spectrum was analyzed to further study the graphitization degree of carbon. The excellent microwave absorption properties of Co3O4/N-doped carbon material has been obtained, with the maximum reflection loss as high as -42.6 dB at only 1.5 mm thick and the maximum absorption bandwidth (<-10 dB) of 4.08 GHz (from 11.03 GHz to 15.11 GHz) at 2.0 mm thick. The excellent microwave absorption of Co3O4/N-doped carbon material depends on not only the dielectric loss and impedance matching, but also the geometrical effects.
引用
收藏
页数:9
相关论文
共 50 条
[1]   PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators [J].
Abolhasani, Mohammad Mahdi ;
Shirvanimoghaddam, Kamyar ;
Naebe, Minoo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 138 :49-56
[2]   3D Graphene Frameworks/Co3O4 Composites Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Bao, Lin ;
Li, Tao ;
Chen, Shu ;
Peng, Chang ;
Li, Ling ;
Xu, Qian ;
Chen, Yashao ;
Ou, Encai ;
Xu, Weijian .
SMALL, 2017, 13 (05)
[3]   Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon [J].
Biswas, Sourav ;
Arief, Injamamul ;
Panja, Sujit Sankar ;
Bose, Suryasarathi .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) :3030-3039
[4]   Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J].
Cao, Mao-Sheng ;
Yang, Jian ;
Song, Wei-Li ;
Zhang, De-Qing ;
Wen, Bo ;
Jin, Hai-Bo ;
Hou, Zhi-Ling ;
Yuan, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6949-6956
[5]   New Lithium Ion Clusters for Construction of Porous MOFs [J].
Clough, Andrew ;
Zheng, Shou-Tian ;
Zhao, Xiang ;
Lin, Qipu ;
Feng, Pingyun ;
Bu, Xianhui .
CRYSTAL GROWTH & DESIGN, 2014, 14 (03) :897-900
[6]  
Datt G, 2017, PHYS CHEM CHEM PHYS, V19, P20699, DOI 10.1039/c7cp03953k
[7]   Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite [J].
Ding, Yi ;
Zhang, Zheng ;
Luo, Baohe ;
Liao, Qingliang ;
Liu, Shuo ;
Liu, Yichong ;
Zhang, Yue .
NANO RESEARCH, 2017, 10 (03) :980-990
[8]   Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation [J].
Fang, Jiyong ;
Shang, Yingshuang ;
Chen, Zheng ;
Wei, Wei ;
Hu, Ying ;
Yue, Xigui ;
Jiang, Zhenhua .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (19) :4695-4705
[9]   A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber [J].
Fang, Jiyong ;
Liu, Tao ;
Chen, Zheng ;
Wang, Yan ;
Wei, Wei ;
Yue, Xigui ;
Jiang, Zhenhua .
NANOSCALE, 2016, 8 (16) :8899-8909
[10]   Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J].
Fu, Min ;
Jiao, Qingze ;
Zhao, Yun ;
Li, Hansheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) :735-744