Model-free Reinforcement Learning with a Non-linear Reconstructor for closed-loop Adaptive Optics control with a pyramid wavefront sensor

被引:7
|
作者
Pou, B. [1 ,2 ]
Smith, J. [3 ]
Quinones, E. [1 ]
Martin, M. [2 ]
Gratadour, D. [4 ]
机构
[1] Barcelona Supercomputing Ctr BSC, C Jordi Girona 29, Barcelona 08034, Spain
[2] Univ Politecn Catalunya UPC, Comp Sci Dept, C Jordi Girona 31, Barcelona 08034, Spain
[3] Australian Natl Univ, Sch Comp, Canberra, Australia
[4] Univ PSL, Sorbonne Univ, Univ Paris Diderot, CNRS,LESIA,Observ Paris, Sorbonne Paris Cite,5 Pl Jules Janssen, F-92195 Meudon, France
来源
ADAPTIVE OPTICS SYSTEMS VIII | 2022年 / 12185卷
关键词
Reinforcement Learning; AO Control; Machine Learning; Pyramid Wavefront Sensor; NEURAL-NETWORKS;
D O I
10.1117/12.2627849
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a model-free reinforcement learning (RL) predictive model with a supervised learning non-linear reconstructor for adaptive optics (AO) control with a pyramid wavefront sensor (P-WFS). First, we analyse the additional problems of training an RL control method with a P-WFS compared to the Shack-Hartmann WFS. From those observations, we propose our solution: a combination of model-free RL for prediction with a non-linear reconstructor based on neural networks with a U-net architecture. We test the proposed method in simulation of closed-loop AO for an 8m telescope equipped with a 32x32 P-WFS and observe that both the predictive and non-linear reconstruction add additional benefits over an optimised integrator.
引用
收藏
页数:14
相关论文
共 19 条
  • [11] Model-free Adaptive Optimal Control of Episodic Fixed-horizon Manufacturing Processes Using Reinforcement Learning
    Dornheim, Johannes
    Link, Norbert
    Gumbsch, Peter
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (06) : 1593 - 1604
  • [12] Model-free Adaptive Optimal Control of Episodic Fixed-horizon Manufacturing Processes Using Reinforcement Learning
    Johannes Dornheim
    Norbert Link
    Peter Gumbsch
    International Journal of Control, Automation and Systems, 2020, 18 : 1593 - 1604
  • [13] Optimal model-free adaptive control based on reinforcement Q-Learning for solar thermal collector fields
    Pataro, Igor M. L.
    Cunha, Rita
    Gil, Juan D.
    Guzman, Jose L.
    Berenguel, Manuel
    Lemos, Joao M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [14] DANSE: Data-Driven Non-Linear State Estimation of Model-Free Process in Unsupervised Learning Setup
    Ghosh, Anubhab
    Honore, Antoine
    Chatterjee, Saikat
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1824 - 1838
  • [15] A Lower Limb Exoskeleton Adaptive Control Method Based on Model-free Reinforcement Learning and Improved Dynamic Movement Primitives
    Huang, Liping
    Zheng, Jianbin
    Gao, Yifan
    Song, Qiuzhi
    Liu, Yali
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2025, 111 (01)
  • [16] Nearly data-based optimal control for linear discrete model-free systems with delays via reinforcement learning
    Zhang, Jilie
    Zhang, Huaguang
    Wang, Binrui
    Cai, Tiaoyang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (07) : 1563 - 1573
  • [17] Data-Driven Model-Free Control of Torque-Applying System for a Mechanically Closed-Loop Test Rig Using Neural Networks
    Parvaresh, Aida
    Mardani, Mohsen
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2020, 66 (05): : 337 - 347
  • [18] Constrained Reinforcement Learning-Based Closed-Loop Reference Model for Optimal Tracking Control of Unknown Continuous-Time Systems
    Zhang, Haoran
    Zhao, Chunhui
    Ding, Jinliang
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) : 7312 - 7324
  • [19] Observer-Based Human-in-the-Loop Optimal Output Cluster Synchronization Control for Multiagent Systems: A Model-Free Reinforcement Learning Method
    Huang, Zongsheng
    Li, Tieshan
    Long, Yue
    Liang, Hongjing
    IEEE TRANSACTIONS ON CYBERNETICS, 2025, 55 (02) : 649 - 660