Thermal strain imaging: a review

被引:65
作者
Seo, Chi Hyung [2 ]
Shi, Yan [3 ]
Huang, Sheng-Wen [3 ]
Kim, Kang [4 ]
O'Donnell, Matthew [1 ]
机构
[1] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[2] Siemens Healthcare, Issaquah, WA USA
[3] Philips Res, Briarcliff Manor, NY USA
[4] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA USA
关键词
ultrasound; thermal strain imaging; tissue differentiation; non-invasive thermometry; RADIOFREQUENCY CATHETER ABLATION; NONINVASIVE TEMPERATURE ESTIMATION; CORONARY-ARTERY CALCIFICATION; AORTIC ATHEROSCLEROTIC PLAQUE; OPTICAL COHERENCE TOMOGRAPHY; ULTRASOUND ECHO-SHIFTS; IN-VIVO; INTRAVASCULAR ULTRASOUND; TISSUE TEMPERATURE; MYOCARDIAL-INFARCTION;
D O I
10.1098/rsfs.2011.0010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies.
引用
收藏
页码:649 / 664
页数:16
相关论文
共 125 条
  • [51] Kim K., 2007, 13 INT S APPL EL MEC
  • [52] Kim K., 2006, BMES, P832
  • [53] Arterial vulnerable plaque characterization using ultrasound-induced thermal strain imaging (TSI)
    Kim, Kang
    Huang, Sheng-Wen
    Hall, Timothy L.
    Witte, Russell S.
    Chenevert, Thomas L.
    O'Donnell, Matthew
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (01) : 171 - 180
  • [54] Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: An in vitro study of human coronary arteries
    Komiyama, N
    Berry, GJ
    Kolz, ML
    Oshima, A
    Metz, JA
    Preuss, P
    Brisken, AF
    Moore, MP
    Yock, PG
    Fitzgerald, PJ
    [J]. AMERICAN HEART JOURNAL, 2000, 140 (04) : 565 - 574
  • [55] Validation of a left atrial lesion pattern for intraoperative ablation of atrial fibrillation
    Kress, DC
    Krum, D
    Chekanov, V
    Hare, J
    Michaud, N
    Akhtar, M
    Sra, J
    [J]. ANNALS OF THORACIC SURGERY, 2002, 73 (04) : 1160 - 1168
  • [56] RADIOFREQUENCY CATHETER ABLATION FOR TACHYARRHYTHMIAS IN CHILDREN AND ADOLESCENTS
    KUGLER, JD
    DANFORD, DA
    DEAL, BJ
    GILLETTE, PC
    PERRY, JC
    SILKA, MJ
    VANHARE, GF
    WALSH, AEP
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1994, 330 (21) : 1481 - 1487
  • [57] Noninvasive Thermometry Assisted by a Dual-Function Ultrasound Transducer for Mild Hyperthermia
    Lai, Chun-Yen
    Kruse, Dustin E.
    Caskey, Charles F.
    Stephens, Douglas N.
    Sutcliffe, Patrick L.
    Ferrara, Katherine W.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (12) : 2671 - 2684
  • [58] TITRATION OF POWER OUTPUT DURING RADIOFREQUENCY CATHETER ABLATION OF ATRIOVENTRICULAR NODAL REENTRANT TACHYCARDIA
    LANGBERG, JJ
    HARVEY, M
    CALKINS, H
    ELATASSI, R
    KALBFLEISCH, SJ
    MORADY, F
    [J]. PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1993, 16 (03): : 465 - 470
  • [59] TEMPERATURE MONITORING DURING RADIOFREQUENCY CATHETER ABLATION OF ACCESSORY PATHWAYS
    LANGBERG, JJ
    CALKINS, H
    ELATASSI, R
    BORGANELLI, M
    LEON, A
    KALBFLEISCH, SJ
    MORADY, F
    [J]. CIRCULATION, 1992, 86 (05) : 1469 - 1474
  • [60] STRUCTURE-DEPENDENT DYNAMIC MECHANICAL-BEHAVIOR OF FIBROUS CAPS FROM HUMAN ATHEROSCLEROTIC PLAQUES
    LEE, RT
    GRODZINSKY, AJ
    FRANK, EH
    KAMM, RD
    SCHOEN, FJ
    [J]. CIRCULATION, 1991, 83 (05) : 1764 - 1770