Computation of eccentric topological indices of zero-divisor graphs based on their edges

被引:5
作者
Koam, Ali N. A. [1 ]
Ahmad, Ali [2 ]
Haider, Azeem [1 ]
Ansari, Moin A. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
[2] Jazan Univ, Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
关键词
topological indices; zero-divisor graph; commutative ring; MAXIMUM ABC INDEX; CONNECTIVITY INDEX; ZAGREB POLYNOMIALS; VERSION;
D O I
10.3934/math.2022641
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topological index of a graph gives its topological property that remains invariant up to graph automorphism. The topological indices which are based on the eccentricity of a chemical graph are molecular descriptors that remain constant in the whole molecular structure and therefore have a significant position in chemical graph theory. In recent years, various topological indices are intensively studied for a variety of graph structures. In this article, we will consider graph structures associated with zero-divisors of commutative rings, called zero-divisor graphs. We will compute the topological indices for a class of zero-divisor graphs of finite commutative rings that are based on their edge eccentricity. More precisely, we will compute the first and third index of Zagreb eccentricity, the eccentricity index of geometric arithmetic, the atomic bonding connectivity eccentricity index, and the eccentric harmonic index of the fourth type related to graphs constructed using zero-divisors of finite commutative rings Z(pn).
引用
收藏
页码:11509 / 11518
页数:10
相关论文
共 50 条
[31]   On zero-divisor graphs of finite rings [J].
Akbari, S. ;
Mohammadian, A. .
JOURNAL OF ALGEBRA, 2007, 314 (01) :168-184
[32]   Zero-divisor graphs of nearrings and semigroups [J].
Cannon, GA ;
Neuerburg, KM ;
Redmond, SP .
NEARRING AND NEARFIELDS, 2005, :189-200
[33]   ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS [J].
Maulana, Fariz ;
Aditya, Muhammad Zulfikar ;
Suwastika, Erma ;
Muchtadi-Alamsyah, Intan ;
Alimon, Nur Idayu ;
Sarmin, Nor Haniza .
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03) :663-680
[34]   Computing Vertex-Based Eccentric Topological Descriptors of Zero-Divisor Graph Associated with Commutative Rings [J].
Ahmadini, Abdullah Ali H. ;
Koam, Ali N. A. ;
Ahmad, Ali ;
Baca, Martin ;
Semanicova-Fenovcikova, Andrea .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
[35]   RETRACTED: Analysis of Eccentricity-Based Topological Invariants with Zero-Divisor Graphs (Retracted Article) [J].
Hui, Zhi-hao ;
Rauf, Abdul ;
Abbas, Muhammad Mohsin ;
Aslam, Adnan .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[36]   Bounds on the Energy of Zero-divisor Graph of Quotient Ring and Its Topological Indices [J].
Krisnawati, Vira Hari ;
Hidayat, Noor ;
Musyarrofah, Ayunda Faizatul .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (02)
[37]   CUT STRUCTURES IN ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS [J].
Axtell, M. ;
Baeth, N. ;
Stickles, J. .
JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) :143-171
[38]   Sombor index of zero-divisor graphs of commutative rings [J].
Gursoy, Arif ;
Ulker, Alper ;
Kircali Gursoy, Necla .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02) :231-257
[39]   Idempotent graphs, weak perfectness, and zero-divisor graphs [J].
Avinash Patil ;
P. S. Momale .
Soft Computing, 2021, 25 :10083-10088
[40]   Idempotent graphs, weak perfectness, and zero-divisor graphs [J].
Patil, Avinash ;
Momale, P. S. .
SOFT COMPUTING, 2021, 25 (15) :10083-10088