STUDY ON GENERAL STABILITY AND STABILIZABILITY OF LINEAR DISCRETE-TIME STOCHASTIC SYSTEMS

被引:25
作者
Hou, Ting [1 ,2 ]
Zhang, Weihai [1 ]
Chen, Bor-Sen [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266510, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China
[3] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
基金
中国国家自然科学基金;
关键词
Spectrum technique; generalized LMI regions; D-R-stability; D(0; alpha; beta)-stability; second-order moment Lyapunov exponent; DEPENDENT NOISE; STATE; CONSTRAINTS; ASSIGNMENT;
D O I
10.1002/asjc.238
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the aid of spectrum technique, a new concept called "D(0,alpha)stabilizability" (0 < alpha <= 1) is introduced, for which a necessary and sufficient condition is also proposed via a linear matrix inequality (LMI)-based approach. Especially, D( 0, alpha)-stabilizability is identical with asymptotic mean square stabilizability when alpha = 1. A more general regional stability called "D-R-stability" is discussed extensively and some concrete examples are given. As applications, the relationship among D( 0, alpha; beta)-stability, the decay rate of the system state response and the second-order moment Lyapunov exponent L-e(2) is revealed.
引用
收藏
页码:977 / 987
页数:11
相关论文
共 21 条
[1]   Robust H∞ filtering of stochastic time-delay systems with state dependent noise [J].
An, Xiuying ;
Zhang, Weihai ;
Li, Qinghua .
ASIAN JOURNAL OF CONTROL, 2008, 10 (03) :384-391
[2]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[3]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[4]  
El Bouhtouri A, 1999, INT J ROBUST NONLIN, V9, P923, DOI 10.1002/(SICI)1099-1239(199911)9:13<923::AID-RNC444>3.0.CO
[5]  
2-2
[6]  
Gahinet P., 1995, LMI Control Toolbox
[7]   A GENERAL-THEORY FOR MATRIX ROOT-CLUSTERING IN SUBREGIONS OF THE COMPLEX-PLANE [J].
GUTMAN, S ;
JURY, EI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :853-863
[8]   INFINITE HORIZON LINEAR QUADRATIC OPTIMAL CONTROL FOR DISCRETE-TIME STOCHASTIC SYSTEMS [J].
Huang, Yulin ;
Zhang, Weihai ;
Zhang, Huanshui .
ASIAN JOURNAL OF CONTROL, 2008, 10 (05) :608-615
[9]  
Kailath T., 1980, Linear systems
[10]  
Khasminskii R., 1980, STOCHASTIC STABILITY