The Schwarzian derivative and Euler-Lagrange equations

被引:1
|
作者
Krynski, Wojciech [1 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Schwarzian derivative; Euler-Lagrange equations; Geometry of ODEs;
D O I
10.1016/j.geomphys.2022.104665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Schwarzian derivative from a variational viewpoint. In particular, we show that the Schwarzian derivative defines a first integral of the Euler-Lagrange equation of a second order Lagrangian. Moreover, we prove that the Schwarzian derivative itself can be considered as the Euler-Lagrange operator for an appropriately chosen class of variations. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Generalized Variational Problems and Euler-Lagrange equations
    Agrawal, Om Prakash
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1852 - 1864
  • [22] ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS
    RABIER, PJ
    RHEINBOLDT, WC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 318 - 329
  • [23] AUTOMATIC INTEGRATION OF EULER-LAGRANGE EQUATIONS WITH CONSTRAINTS
    GEAR, CW
    LEIMKUHLER, B
    GUPTA, GK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1985, 12-3 (MAY) : 77 - 90
  • [24] Variational integrator for fractional Euler-Lagrange equations
    Bourdin, Loic
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    APPLIED NUMERICAL MATHEMATICS, 2013, 71 : 14 - 23
  • [25] Fractional Euler-Lagrange equations for constrained systems
    Avkar, T
    Baleanu, D
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 84 - 90
  • [26] ON THE NUMERICAL-SOLUTION OF EULER-LAGRANGE EQUATIONS
    POTRA, FA
    RHEINBOLDT, WC
    MECHANICS OF STRUCTURES AND MACHINES, 1991, 19 (01): : 1 - 18
  • [27] MODELS OF MACHINING WITH ARBITRARY EULER-LAGRANGE EQUATIONS
    JOYOT, P
    RAKOTOMALALA, R
    TOURATIER, M
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1141 - 1144
  • [28] WILD SOLUTIONS TO SCALAR EULER-LAGRANGE EQUATIONS
    Johansson, Carl johan peter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (07) : 4931 - 4960
  • [29] Solutions of Euler-Lagrange equations in fractional mechanics
    Klimek, M.
    XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 73 - 78
  • [30] Euler-Lagrange equations for variational problems involving the Riesz-Hilfer fractional derivative
    Ibrahim, A. G.
    Elmandouh, A. A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 678 - 696