The Brunn-Minkowski-Firey inequality for nonconvex sets

被引:31
作者
Lutwak, Erwin [1 ]
Yang, Deane [1 ]
Zhang, Gaoyong [1 ]
机构
[1] NYU, Polytech Inst, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Brunn-Minkowski inequality; Brunn-Minkowski-Firey inequality; Minkowski combinations; Minkowski-Firey L-p-combinations; AFFINE; BODIES; BODY;
D O I
10.1016/j.aam.2011.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The definition of Minkowski-Firey L-p-combinations is extended from convex bodies to arbitrary subsets of Euclidean space. The Brunn-Minkowski-Firey inequality (along with its equality conditions), previously established only for convex bodies, is shown to hold for compact sets. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 45 条
[1]   Positions of convex bodies associated to extremal problems and isotropic measures [J].
Bastero, J ;
Romance, M .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :64-88
[2]   A sharp Rogers and Shephard inequality for the p-difference body of planar convex bodies [J].
Bianchini, Chiara ;
Colesanti, Andrea .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2575-2582
[3]  
Burago Y. D., 1988, Springer Series in Soviet Mathematics, V285
[4]   The Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
ADVANCES IN MATHEMATICS, 2002, 167 (01) :128-141
[5]   The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry [J].
Chou, Kai-Seng ;
Wang, Xu-Jia .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :33-83
[6]   Affine Moser-Trudinger and Morrey-Sobolev inequalities [J].
Cianchi, Andrea ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) :419-436
[7]   Small ball probability estimates, ψ2-behavior and the hyperplane conjecture [J].
Dafnis, Nikos ;
Paouris, Grigoris .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) :1933-1964
[8]  
Firey W.J., 1962, Math. Scand., V10, P17
[9]   A stability result for mean width of Lp-centroid bodies [J].
Fleury, B. ;
Guedon, O. ;
Paouris, G. .
ADVANCES IN MATHEMATICS, 2007, 214 (02) :865-877
[10]  
Gardner R. J., 2006, ENCY MATH APPL, V58