Comparison of the predictive abilities of pharmacogenetics-based warfarin dosing algorithms using seven mathematical models in Chinese patients

被引:0
作者
Li, Xi [1 ,2 ]
Liu, Rong [1 ,2 ]
Luo, Zhi-Ying [1 ,2 ]
Yan, Han [1 ,2 ]
Huang, Wei-Hua [1 ,2 ]
Yin, Ji-Ye [1 ,2 ]
Mao, Xiao-Yuan [1 ,2 ]
Chen, Xiao-Ping [1 ,2 ]
Liu, Zhao-Qian [1 ,2 ]
Zhou, Hong-Hao [1 ,2 ]
Zhang, Wei [1 ,2 ]
机构
[1] Cent S Univ, Xiangya Hosp, Dept Clin Pharmacol, Changsha 410008, Hunan, Peoples R China
[2] Cent S Univ, Inst Clin Pharmacol, Hunan Key Lab Pharmacogenet, Changsha 410078, Hunan, Peoples R China
基金
中国博士后科学基金;
关键词
machine learning; pharmacogenetics dosing algorithms; predictive; warfarin; HEART-VALVE REPLACEMENT; RANDOMIZED-TRIAL; DOSE PREDICTION; CYTOCHROME P4502C9; VKORC1; GENOTYPES; GENETIC-VARIANTS; CLINICAL FACTORS; CYP2C9; GENOTYPE; ACENOCOUMAROL; PHENPROCOUMON;
D O I
10.2217/PGS.15.26
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aim: This study is aimed to find the best predictive model for warfarin stable dosage. Materials & methods: Seven models, namely multiple linear regression (MLR), artificial neural network, regression tree, boosted regression tree, support vector regression, multivariate adaptive regression spines and random forest regression, as well as the genetic and clinical data of two Chinese samples were employed. Results: The average predicted achievement ratio and mean absolute error of the algorithms were ranging from 52.31 to 58.08% and 4.25 to 4.84 mg/week in validation samples, respectively. The algorithm based on MLR showed the highest predicted achievement ratio and the lowest mean absolute error. Conclusion: At present, MLR may be still the best model for warfarin stable dosage prediction in Chinese population.
引用
收藏
页码:583 / 590
页数:8
相关论文
共 28 条
  • [1] Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation
    Anderson, Jeffrey L.
    Horne, Benjamin D.
    Stevens, Scott M.
    Grove, Amanda S.
    Barton, Stephanie
    Nicholas, Zachery P.
    Kahn, Samera F. S.
    May, Heidi T.
    Samuelson, Kent M.
    Muhlestein, Joseph B.
    Carlquist, John F.
    [J]. CIRCULATION, 2007, 116 (22) : 2563 - 2570
  • [2] VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children
    Biss, Tina T.
    Avery, Peter J.
    Brandao, Leonardo R.
    Chalmers, Elizabeth A.
    Williams, Michael D.
    Grainger, John D.
    Leathart, Julian B. S.
    Hanley, John P.
    Daly, Ann K.
    Kamali, Farhad
    [J]. BLOOD, 2012, 119 (03) : 868 - 873
  • [3] Cytochrome P4502C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity
    Bodin, L
    Verstuyft, C
    Tregouet, DA
    Robert, A
    Dubert, L
    Funck-Brentano, C
    Jaillon, P
    Beaune, P
    Laurent-Puig, P
    Becquemont, L
    Loriot, MA
    [J]. BLOOD, 2005, 106 (01) : 135 - 140
  • [4] High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans
    Cosgun, Erdal
    Limdi, Nita A.
    Duarte, Christine W.
    [J]. BIOINFORMATICS, 2011, 27 (10) : 1384 - 1389
  • [5] STANDARDIZED INITIAL WARFARIN TREATMENT - EVALUATION OF INITIAL TREATMENT RESPONSE AND MAINTENANCE DOSE PREDICTION BY RANDOMIZED TRIAL, AND RISK-FACTORS FOR AN EXCESSIVE WARFARIN RESPONSE
    DOECKE, CJ
    COSH, DG
    GALLUS, AS
    [J]. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE, 1991, 21 (03): : 319 - 324
  • [6] Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin
    Gage, B. F.
    Eby, C.
    Johnson, J. A.
    Deych, E.
    Rieder, M. J.
    Ridker, P. M.
    Milligan, P. E.
    Grice, G.
    Lenzini, P.
    Rettie, A. E.
    Aquilante, C. L.
    Grosso, L.
    Marsh, S.
    Langaee, T.
    Farnett, L. E.
    Voora, D.
    Veenstra, D. L.
    Glynn, R. J.
    Barrett, A.
    McLeod, H. L.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (03) : 326 - 331
  • [7] Prediction of optimal warfarin maintenance dose using advanced artificial neural networks
    Grossi, Enzo
    Podda, Gian Marco
    Pugliano, Mariateresa
    Gabba, Silvia
    Verri, Annalisa
    Carpani, Giovanni
    Buscema, Massimo
    Casazza, Giovanni
    Cattaneo, Marco
    [J]. PHARMACOGENOMICS, 2014, 15 (01) : 29 - 37
  • [8] Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin
    Kamali, F
    Khan, TI
    King, BP
    Frearson, R
    Kesteven, P
    Wood, P
    Daly, AK
    Wynne, H
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2004, 75 (03) : 204 - 212
  • [9] Effect of CYP2C9 and VKORC1 genotypes on early-phase and steady-state warfarin dosing in Korean patients with mechanical heart valve replacement
    Kim, Ho-Sook
    Lee, Sang Seop
    Oh, Minkyung
    Jang, Yin-Jin
    Kim, Eun-Young
    Han, Il Yong
    Cho, Kwang-Hyun
    Shin, Jae-Gook
    [J]. PHARMACOGENETICS AND GENOMICS, 2009, 19 (02) : 103 - 112
  • [10] A Pharmacogenetic versus a Clinical Algorithm for Warfarin Dosing
    Kimmel, Stephen E.
    French, Benjamin
    Kasner, Scott E.
    Johnson, Julie A.
    Anderson, Jeffrey L.
    Gage, Brian F.
    Rosenberg, Yves D.
    Eby, Charles S.
    Madigan, Rosemary A.
    McBane, Robert B.
    Abdel-Rahman, Sherif Z.
    Stevens, Scott M.
    Yale, Steven
    Mohler, Emile R., III
    Fang, Margaret C.
    Shah, Vinay
    Horenstein, Richard B.
    Limdi, Nita A.
    Muldowney, James A. S., III
    Gujral, Jaspal
    Delafontaine, Patrice
    Desnick, Robert J.
    Ortel, Thomas L.
    Billett, Henny H.
    Pendleton, Robert C.
    Geller, Nancy L.
    Halperin, Jonathan L.
    Goldhaber, Samuel Z.
    Caldwell, Michael D.
    Califf, Robert M.
    Ellenberg, Jonas H.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (24) : 2283 - 2293