New Ramanujan type congruences modulo 5 for overpartitions

被引:12
作者
Dou, Donna Q. J. [1 ]
Lin, Bernard L. S. [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Overpartition; Congruence; Theta function; POWERS;
D O I
10.1007/s11139-016-9782-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p) over bar (n) denote the number of overpartitions of n. In this paper, we shall show that for n >= 0, (p) over bar (80n + r) equivalent to 0 (mod 5), where r = 8, 52, 68, and 72. In addition, we present a short alternative proof of the congruence (p) over bar (40n + 35) = 0 (mod 5), which is conjectured by Hirschhorn and Sellers.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 21 条
[1]  
[Anonymous], IDENTITY RAMANUJAN A
[2]  
[Anonymous], 1991, RAMANUJANS NOTEBOOKS
[3]  
[Anonymous], RAMANUJANS LOST NO 1
[4]   Ramanujan's modular equations of degree 5 [J].
Baruah, Nayandeep Deka ;
Bora, Jonali ;
Ojah, Kanan Kumari .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (04) :485-506
[5]  
Berndt BC., 2006, NUMBER THEORY SPIRIT
[6]   Ramanujan's congruences for the partition function modulo 5, 7, and 11 [J].
Berndt, Bruce C. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (03) :349-354
[7]   Ramanujan-type congruences for overpartitions modulo 16 [J].
Chen, William Y. C. ;
Hou, Qing-Hu ;
Sun, Lisa H. ;
Zhang, Li .
RAMANUJAN JOURNAL, 2016, 40 (02) :311-322
[8]   Ramanujan-type congruences for overpartitions modulo 5 [J].
Chen, William Y. C. ;
Sun, Lisa H. ;
Wang, Rong-Hua ;
Zhang, Li .
JOURNAL OF NUMBER THEORY, 2015, 148 :62-72
[9]   Proof of a conjecture of Hirschhorn and Sellers on overpartitions [J].
Chen, William Y. C. ;
Xia, Ernest X. W. .
ACTA ARITHMETICA, 2014, 163 (01) :59-69
[10]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65