THE DIVIDEND PROBLEM WITH A FINITE HORIZON

被引:19
作者
De Angelis, Tiziano [1 ]
Ekstrom, Erik [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Uppsala Univ, Dept Math, BOX 480, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
The dividend problem; singular control; optimal stopping; SINGULAR STOCHASTIC-CONTROL; OPTIMAL CONSUMPTION PROBLEM; TIME-HORIZON; PROBABILISTIC ASPECTS; FOLLOWER PROBLEMS; RUSSIAN OPTIONS; BROWNIAN MODEL; CONNECTIONS; ABSORPTION; FUEL;
D O I
10.1214/17-AAP1286
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterise the value function of the optimal dividend problem with a finite time horizon as the unique classical solution of a suitable Hamilton-Jacobi-Bellman equation. The optimal dividend strategy is realised by a Skorokhod reflection of the fund's value at a time-dependent optimal boundary. Our results are obtained by establishing for the first time a new connection between singular control problems with an absorbing boundary and optimal stopping problems on a diffusion reflected at 0 and created at a rate proportional to its local time.
引用
收藏
页码:3525 / 3546
页数:22
相关论文
共 33 条
[1]  
[Anonymous], 1999, FUNDAMENTAL PRINCIPL
[2]   STRATEGIES FOR DIVIDEND DISTRIBUTION: A REVIEW [J].
Avanzi, Benjamin .
NORTH AMERICAN ACTUARIAL JOURNAL, 2009, 13 (02) :217-251
[3]  
Bather J. A., 1967, 5 BERKELEY S MATH ST, V3, P181
[4]  
Benes V. E., 1980, Stochastics, V4, P39, DOI 10.1080/17442508008833156
[5]   A connection between singular stochastic control and optimal stopping [J].
Benth, FE ;
Reikvam, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 49 (01) :27-41
[6]   Connections between optimal stopping and singular stochastic control [J].
Boetius, F ;
Kohlmann, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 77 (02) :253-281
[7]   OPTIMAL STOPPING AND FREE BOUNDARY CHARACTERIZATIONS FOR SOME BROWNIAN CONTROL PROBLEMS [J].
Budhiraja, Amarjit ;
Ross, Kevin .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (06) :2367-2391
[8]  
De Angelis T., 2016, PREPRINT
[9]  
De Angelis T., 2015, PREPRINT
[10]   A NONCONVEX SINGULAR STOCHASTIC CONTROL PROBLEM AND ITS RELATED OPTIMAL STOPPING BOUNDARIES [J].
De Angelis, Tiziano ;
Ferrari, Giorgio ;
Moriarty, John .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (03) :1199-1223