Duality Features of Left Hopf Algebroids

被引:6
作者
Chemla, Sophie [1 ]
Gavarini, Fabio [2 ]
Kowalzig, Niels [3 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, UMR 7586, F-75005 Paris, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[3] Ist Nazl Alta Matemat, Ple Aldo Moro 5, I-00185 Rome, Italy
关键词
Hopf algebroids; Quantum groupoids; Duals; Dualising modules; (Co) module categories; Lie-Rinehart algebras;
D O I
10.1007/s10468-016-9604-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore special features of the pair (U (au),U (au)) formed by the right and left dual over a (left) bialgebroid U in case the bialgebroid is, in particular, a left Hopf algebroid. It turns out that there exists a bialgebroid morphism S (au) from one dual to another that extends the construction of the antipode on the dual of a Hopf algebra, and which is an isomorphism if U is both a left and right Hopf algebroid. This structure is derived from PhA(1)ng's categorical equivalence between left and right comodules over U without the need of a (Hopf algebroid) antipode, a result which we review and extend. In the applications, we illustrate the difference between this construction and those involving antipodes and also deal with dualising modules and their quantisations.
引用
收藏
页码:913 / 941
页数:29
相关论文
共 26 条
  • [1] Anderson F.W., 1992, GRADUATE TEXTS MATH, V13
  • [2] [Anonymous], 1987, PERSPECTIVES MATH
  • [3] Beck Jon, 1969, SEMINAR TRIPLES CATE, P119, DOI 10.1007/BFb0083084
  • [4] Böhm G, 2009, HBK ALGEBR, V6, P173, DOI 10.1016/S1570-7954(08)00205-2
  • [5] Hopf algebroids with bijective antipodes:: axioms, integrals, and duals
    Böhm, G
    Szlachányi, K
    [J]. JOURNAL OF ALGEBRA, 2004, 274 (02) : 708 - 750
  • [6] Hochschild cohomology and Atiyah classes
    Calaque, Damien
    Van den Bergh, Michel
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (05) : 1839 - 1889
  • [7] Cartier P., 1957, SEMINAIRE S LIE FS P, V2
  • [8] Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators
    Chemla, S
    [J]. JOURNAL OF ALGEBRA, 2004, 276 (01) : 80 - 102
  • [9] POINCARE-DUALITY FOR K-A LIE-SUPERALGEBRAS
    CHEMLA, S
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (03): : 371 - 397
  • [10] Duality functors for quantum groupoids
    Chemla, Sophie
    Gavarini, Fabio
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (02) : 287 - 358