Hyperelliptic curves with compact parameters

被引:0
作者
Brown, E [1 ]
Myers, BT
Solinas, JA
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
[2] Wheaton Coll, Wheaton, IL 60187 USA
[3] Natl Secur Agcy, Ft George G Meade, MD 20755 USA
关键词
hyperelliptic curves; certificates; public-key cryptography; complex multiplication;
D O I
10.1007/s10623-004-1718-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a family of hyperelliptic curves whose Jacobians are suitable for cryptographic use, and whose parameters can be specified in a highly efficient way. This is done via complex multiplication and identity-based parameters. We also present some novel computational shortcuts for these families.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 13 条
  • [1] [Anonymous], 1983, ENCY MATH APPL
  • [2] BROWN E, 2000, ELLIPTIC CURVES COMP
  • [3] Lattice basis reduction, Jacobi sums and hyperelliptic cryptosystems
    Buhler, J
    Koblitz, N
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 147 - 154
  • [4] Gallant R. P., 2001, Advances in Cryptology - CRTPTO 2001. 21st Annual International Cryptology Conference, Proceedings (Lecture Notes in Computer Science Vol.2139), P190
  • [5] HASSE H, 1979, NUMBER THEORY
  • [6] Ireland K., 1982, CLASSICAL INTRO MODE, DOI DOI 10.1007/978-1-4757-1779-2
  • [7] IWASAWA K, 1975, S MATH, V15
  • [8] LANGE T, 2003, FORMULAE ARITHMETIC
  • [9] Lemmermeyer F., 1995, Exposition. Math, V13, P385
  • [10] Marcus Daniel A., 1977, Number fields