Moving Object Detection in HEVC Video by Frame Sub-sampling
被引:0
作者:
Moriyama, Masaya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Moriyama, Masaya
[1
]
Minemura, Kazuki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Minemura, Kazuki
[1
]
Wong, KokSheik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Wong, KokSheik
[1
]
机构:
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
来源:
2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS)
|
2015年
Video compression aims to remove spatial-temporal redundancies where the encoded bitstream, particularly the motion vectors, may not represent the actual motions in the video. Hence, moving object detection in the compressed video stream is a technically challenging task. In this work, we propose a novel moving object detection algorithm using frame sub-sampling method in the state-of-the-art HEVC video coding standard. Specifically, the number of frames is reduced by means of (temporal) sub-sampling. The frames are re-encoded using HEVC with the same environmental setting to amplify the motion of the moving objects. Sub-sampling effectively increases the motion intensity of the objects, which can be the significant cue for detecting moving object while motions in the background still remain small. Motion vectors and INTRA coding units of moving object obtained via frame sub-sampling and re-encoding are selectively utilized to separate the background and moving objects in the video. The segmented results are refined and compared with the result without performing frame sub-sampling. Results show that the sub-sampling method achieves higher accuracy, with an improvement greater than 0.35 in terms of F-measure.
Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919
机构:
Microsoft Corp, Redmond, WA 98052 USAMicrosoft Corp, Redmond, WA 98052 USA
Sullivan, Gary J.
;
Ohm, Jens-Rainer
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Commun Engn, D-52056 Aachen, GermanyMicrosoft Corp, Redmond, WA 98052 USA
Ohm, Jens-Rainer
;
Han, Woo-Jin
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Software Design & Management, Songnam 461701, South KoreaMicrosoft Corp, Redmond, WA 98052 USA
Han, Woo-Jin
;
Wiegand, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Heinrich Hertz Inst Nachrichtentech Berlin GmbH, Fraunhofer Inst Telecommun, D-10587 Berlin, Germany
Berlin Inst Technol, D-10587 Berlin, GermanyMicrosoft Corp, Redmond, WA 98052 USA
Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919
机构:
Microsoft Corp, Redmond, WA 98052 USAMicrosoft Corp, Redmond, WA 98052 USA
Sullivan, Gary J.
;
Ohm, Jens-Rainer
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Commun Engn, D-52056 Aachen, GermanyMicrosoft Corp, Redmond, WA 98052 USA
Ohm, Jens-Rainer
;
Han, Woo-Jin
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Software Design & Management, Songnam 461701, South KoreaMicrosoft Corp, Redmond, WA 98052 USA
Han, Woo-Jin
;
Wiegand, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Heinrich Hertz Inst Nachrichtentech Berlin GmbH, Fraunhofer Inst Telecommun, D-10587 Berlin, Germany
Berlin Inst Technol, D-10587 Berlin, GermanyMicrosoft Corp, Redmond, WA 98052 USA