Dual Contradistinctive Generative Autoencoder

被引:38
|
作者
Parmar, Gaurav [1 ]
Li, Dacheng [1 ]
Lee, Kwonjoon [2 ]
Tu, Zhuowen [2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Calif San Diego, San Diego, CA USA
关键词
D O I
10.1109/CVPR46437.2021.00088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new generative autoencoder model with dual contradistinctive losses to improve generative autoencoder that performs simultaneous inference (reconstruction) and synthesis (sampling). Our model, named dual contradistinctive generative autoencoder (DC-VAE), integrates an instance-level discriminative loss (maintaining the instance-level fidelity for the reconstruction/synthesis) with a set-level adversarial loss (encouraging the set-level fidelity for the reconstruction/synthesis), both being contradistinctive. Extensive experimental results by DC-VAE across different resolutions including 32x32, 64x64, 128x128, and 512x512 are reported. The two contradistinctive losses in VAE work harmoniously in DC-VAE leading to a significant qualitative and quantitative performance enhancement over the baseline VAEs without architectural changes. State-of-the-art or competitive results among generative autoencoders for image reconstruction, image synthesis, image interpolation, and representation learning are observed. DC-VAE is a general-purpose VAE model, applicable to a wide variety of downstream tasks in computer vision and machine learning.
引用
收藏
页码:823 / 832
页数:10
相关论文
共 50 条
  • [1] DUAL ADVERSARIAL AUTOENCODER FOR DERMOSCOPIC IMAGE GENERATIVE MODELING
    Yang, Hao-Yu
    Staib, Lawrence H.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1247 - 1250
  • [2] Generative autoencoder to prevent overregularization of variational autoencoder
    Ko, YoungMin
    Ko, SunWoo
    Kim, YoungSoo
    ETRI JOURNAL, 2025, 47 (01) : 80 - 89
  • [3] Lifelong Generative Adversarial Autoencoder
    Ye, Fei
    Bors, Adrian G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14684 - 14698
  • [4] Conditional Generative Denoising Autoencoder
    Karatsiolis, Savvas
    Schizas, Christos N.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 4117 - 4129
  • [5] Prior Images Guided Generative Autoencoder Model for Dual-Camera Compressive Spectral Imaging
    Chen, Yurong
    Wang, Yaonan
    Zhang, Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8629 - 8643
  • [6] Generative Oversampling with a Contrastive Variational Autoencoder
    Dai, Wangzhi
    Ng, Kenney
    Severson, Kristen A.
    Huang, Wei
    Anderson, Fred
    Stultz, Collin M.
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 101 - 109
  • [7] Anomalous node detection in attributed social networks using dual variational autoencoder with generative adversarial networks
    Khan W.
    Abidin S.
    Arif M.
    Ishrat M.
    Haleem M.
    Shaikh A.A.
    Farooqui N.A.
    Faisal S.M.
    Data Science and Management, 2024, 7 (02): : 89 - 98
  • [8] Prognostics With Variational Autoencoder by Generative Adversarial Learning
    Huang, Yu
    Tang, Yufei
    VanZwieten, James
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (01) : 856 - 867
  • [9] Generative Moment Matching Autoencoder with Perceptual Loss
    Kiasari, Mohammad Ahangar
    Moirangthem, Dennis Singh
    Lee, Minho
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 226 - 234
  • [10] A neural generative autoencoder for bilingual word embeddings
    Su, Jinsong
    Wu, Shan
    Zhang, Biao
    Wu, Changxing
    Qin, Yue
    Xiong, Deyi
    INFORMATION SCIENCES, 2018, 424 : 287 - 300