Centrosymmetric stochastic matrices

被引:4
作者
Cao, Lei [1 ,2 ]
McLaren, Darian [3 ]
Plosker, Sarah [3 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan, Shandong, Peoples R China
[2] Nova Southeastern Univ, Halmos Coll, Dept Math, Ft Lauderdale, FL 33314 USA
[3] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Stochastic matrix; centrosymmetric matrix; extreme points; Birkhoff theorem; faces; THEOREM;
D O I
10.1080/03081087.2020.1733461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the convex set of stochastic matrices and the convex set of centrosymmetric stochastic matrices (stochastic matrices that are symmetric under rotation by 180). For , we demonstrate a Birkhoff theorem for its extreme points and create a basis from certain -matrices. For , we characterize its extreme points and create bases, whose construction depends on the parity of m, using our basis construction for stochastic matrices. For each of and , we further characterize their extreme points in terms of their associated bipartite graphs, we discuss a graph parameter called the fill and compute it for the various basis elements, and we examine the number of vertices of the faces of these sets. We provide examples illustrating the results throughout.
引用
收藏
页码:449 / 464
页数:16
相关论文
共 19 条
[1]   Birkhoff's theorem for panstochastic matrices [J].
Alvis, D ;
Kinyon, M .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (01) :28-37
[2]   Birkhoff's polytope and unistochastic matrices, N=3 and N=4 [J].
Bengtsson, I ;
Ericsson, Å ;
Kus, M ;
Tadej, W ;
Zyczkowski, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) :307-324
[3]   A SET OF LINEARLY INDEPENDENT PERMUTATION MATRICES [J].
BLAKLEY, GR ;
DIXON, RD .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (09) :1084-&
[4]   CONVEX POLYHEDRA OF DOUBLY STOCHASTIC MATRICES .1. APPLICATIONS OF PERMANENT FUNCTION [J].
BRUALDI, RA ;
GIBSON, PM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) :194-230
[5]   EXTREMAL PLANE STOCHASTIC MATRICES OF DIMENSION 3 [J].
BRUALDI, RA ;
CSIMA, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (02) :105-133
[6]   Symmetric, Hankel-Symmetric, and Centrosymmetric Doubly Stochastic Matrices [J].
Brualdi R.A. ;
Cao L. .
Acta Mathematica Vietnamica, 2018, 43 (4) :675-700
[7]  
Cho S.J., 2001, Commun. Korean Math. Soc., V16, P679
[8]   BIRKHOFF-VON NEUMANN THEOREM FOR MULTISTOCHASTIC TENSORS [J].
Cui, Lu-Bin ;
Li, Wen ;
Ng, Michael K. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) :956-973
[9]  
Dormann CF., 2009, Open Ecol J, V2, P7
[10]  
Erdos P., 1959, Publications Mathematicae, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12