NON-NEGATIVE DEFORMATIONS OF WEIGHTED HOMOGENEOUS SINGULARITIES

被引:5
作者
Nuno-Ballesteros, J. J. [1 ]
Orefice-Okamoto, B. [2 ]
Tomazella, J. N. [2 ]
机构
[1] Univ Valencia, Dept Geometria & Topol, Campus Burjassot, E-46100 Burjassot, Spain
[2] Univ Fed Sao Carlos, Dept Matemat, Caixa Postal 676, BR-13560 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
MILNOR NUMBER; TOPOLOGICAL TRIVIALITY; ANALYTIC VARIETIES; SPACE-CURVES; INVARIANCE;
D O I
10.1017/S0017089516000641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a weighted homogeneous germ of complex analytic variety (X, 0) subset of (C-n, 0) and a function germ f : (C-n, 0) -> (C, 0). We derive necessary and sufficient conditions for some deformations to have non-negative degree (i.e., for any additional term in the deformation, the weighted degree is not smaller) in terms of an adapted version of the relative Milnor number. We study the cases where (X, 0) is an isolated hypersurface singularity and the invariant is the Bruce-Roberts number of f with respect to (X, 0), and where (X, 0) is an isolated complete intersection or a curve singularity and the invariant is the Milnor number of the germ f : (X, 0) -> C. In the last part, we give some formulas for the invariants in terms of the weights and the degrees of the polynomials.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 24 条
[1]   Invariants of topological relative right equivalences [J].
Ahmed, Imran ;
Soares Ruas, Maria Aparecida ;
Tomazella, Joao Nivaldo .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (02) :307-315
[2]  
[Anonymous], 1968, SINGULAR POINTS COMP
[3]  
Bivia-Ausina C., 2000, HOKKAIDO MATH J, V29, P341
[4]   CRITICAL-POINTS OF FUNCTIONS ON ANALYTIC VARIETIES [J].
BRUCE, JW ;
ROBERTS, RM .
TOPOLOGY, 1988, 27 (01) :57-90
[5]  
Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
[6]   THE MILNOR NUMBER AND DEFORMATIONS OF COMPLEX CURVE SINGULARITIES [J].
BUCHWEITZ, RO ;
GREUEL, GM .
INVENTIONES MATHEMATICAE, 1980, 58 (03) :241-281
[7]   TOPOLOGICAL TRIVIALITY AND VERSALITY FOR SUBGROUPS OF A AND K .2. SUFFICIENT CONDITIONS AND APPLICATIONS [J].
DAMON, J .
NONLINEARITY, 1992, 5 (02) :373-412
[8]   A characterization of semi-quasihomogeneous functions in terms of the Milnor number [J].
Furuya, M ;
Tomari, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (07) :1885-1890
[9]   Functions on space curves [J].
Goryunov, VV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :807-822
[10]  
GREUEL GM, 1980, MATH ANN, V250, P157, DOI 10.1007/BF02599793