Bandgap tuning of two-dimensional materials by sphere diameter engineering

被引:114
|
作者
Zeng, Mengqi [1 ]
Liu, Jinxin [1 ]
Zhou, Lu [2 ]
Mendes, Rafael G. [3 ,4 ,5 ]
Dong, Yongqi [6 ,7 ]
Zhang, Min-Ye [8 ]
Cui, Zhi-Hao [8 ]
Cai, Zhonghou [6 ]
Zhang, Zhan [6 ]
Zhu, Daming [9 ]
Yang, Tieying [9 ]
Li, Xiaolong [9 ]
Wang, Jianqiang [10 ]
Zhao, Liang [4 ,5 ]
Chen, Guoxian [11 ,12 ]
Jiang, Hong [8 ]
Ruemmeli, Mark H. [3 ,4 ,5 ,13 ]
Zhou, Hua [6 ]
Fu, Lei [1 ,2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan, Peoples R China
[2] Wuhan Univ, Inst Adv Studies, Wuhan, Peoples R China
[3] IFW Dresden, Dresden, Germany
[4] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou, Peoples R China
[5] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou, Peoples R China
[6] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
[7] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei, Anhui, Peoples R China
[8] Peking Univ, Coll Chem & Mol Engn, Beijing, Peoples R China
[9] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
[10] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[11] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[12] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan, Peoples R China
[13] Polish Acad Sci, Ctr Polymer & Carbon Mat, Zabrze, Poland
关键词
TUNABLE BANDGAP; SURFACE-ENERGY; BORON-NITRIDE; GRAPHENE; STRAIN; PIEZOELECTRICITY; TRANSITION; MONOLAYER; GROWTH; GLASS;
D O I
10.1038/s41563-020-0622-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS2 and the sphere diameter in a continuous range as large as 360 meV. Fully uniform bandgap tuning of all the as-grown MoS2 crystals is realized due to the isotropic characteristic of the sphere. More intriguingly, both a decrease and an increase of the bandgap can be achieved by constructing a positive or negative curvature. By fusing individual spheres in the melted state, post-synthesis bandgap adjustment of the supported 2D materials can be realized. This SDE technique, showing good precision, uniformity and reproducibility with high efficiency, may further accelerate the potential applications of 2D materials.
引用
收藏
页码:528 / +
页数:8
相关论文
共 50 条
  • [41] Strain engineering of two-dimensional materials for advanced electrocatalysts
    Xu, X.
    Liang, T.
    Kong, D.
    Wang, B.
    Zhi, L.
    MATERIALS TODAY NANO, 2021, 14
  • [42] Edge engineering in chemically active two-dimensional materials
    Zhou, Lijun
    Li, Mengyan
    Wang, Wei
    Wang, Cong
    Yang, Huiping
    Cao, Yang
    NANO RESEARCH, 2022, 15 (11) : 9890 - 9905
  • [43] Strong Interlayer Interaction for Engineering Two-Dimensional Materials
    Bian, Zheng
    Miao, Jialei
    Zhao, Yuda
    Chai, Yang
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (12): : 1220 - 1231
  • [44] Two-Dimensional Nanoarchitectonics for Two-Dimensional Materials: Interfacial Engineering of Transition-Metal Dichalcogenides
    Shinde, Pragati A.
    Ariga, Katsuhiko
    LANGMUIR, 2023, 39 (50) : 18175 - 18186
  • [45] Two-Dimensional Flow on the Sphere
    Salmon, Rick
    Pizzo, Nick
    ATMOSPHERE, 2023, 14 (04)
  • [46] On maps of the two-dimensional sphere
    Shchepin, EV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1218 - 1219
  • [47] Two-dimensional turbulence on a sphere
    Lindborg, Erik
    Nordmark, Arne
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [48] Two-dimensional skyrmions on the sphere
    Scoccola, NN
    Bes, DR
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (09):
  • [49] Bandgap engineering of high mobility two-dimensional semiconductors toward optoelectronic devices
    Hao, Qiaoyan
    Li, Peng
    Liu, Jidong
    Huang, Jiarui
    Zhang, Wenjing
    JOURNAL OF MATERIOMICS, 2023, 9 (03) : 527 - 540
  • [50] Giant Bandgap Engineering in Two-Dimensional Ferroelectricα-In2Se3
    Zhang, Jiaxiang
    Zhang, Xuanlin
    Wang, Yu
    Cheng, Peng
    Feng, Baojie
    Wu, Kehui
    Lu, Yunhao
    Chen, Lan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (14): : 3261 - 3268