Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase

被引:6
|
作者
Shi, Wei [1 ]
Zhou, Wei [2 ,3 ]
Chen, Ming [2 ,3 ]
Yang, Yang [4 ]
Hu, Yangbo [2 ]
Liu, Bin [1 ]
机构
[1] Univ Minnesota, Hormel Inst, Sect Transcript & Gene Regulat, 801 16th Ave NE, Austin, MN 55912 USA
[2] Chinese Acad Sci, Ctr Biosafety Megasci, Wuhan Inst Virol, State Key Lab Virol, Wuhan 430071, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
BACTERIAL HOMOLOG; CRYO-EM; EVOLUTIONARY CONSERVATION; PROTEIN RAPA; VISUALIZATION; MECHANISMS; INITIATION; INSIGHTS; COMPLEX; BINDING;
D O I
10.1093/nar/gkab744
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RapA is a bacterial RNA polymerase (RNAP)-associated Swi2/Snf2 ATPase that stimulates RNAP recycling. The ATPase activity of RapA is autoinhibited by its N-terminal domain (NTD) but activated with RNAP bound. Here, we report a 3.4-angstrom cryo-EM structure of Escherichia coli RapA-RNAP elongation complex, in which the ATPase active site of RapA is structurally remodeled. In this process, the NTD of RapA is wedged open by RNAP beta' zinc-binding domain (ZBD). In addition, RNAP beta flap tip helix (FTH) forms extensive hydrophobic interactions with RapA ATPase core domains. Functional assay demonstrates that removing the ZBD or FTH of RNAP significantly impairs its ability to activate the ATPase activity of RapA. Our results provide the structural basis of RapA ATPase activation by RNAP, through the active site remodeling driven by the ZBD-buttressed large-scale opening of NTD and the direct interactions between FTH and ATPase core domains.
引用
收藏
页码:10707 / 10716
页数:10
相关论文
共 50 条
  • [21] Structure of chromatin remodeler Swi2/Snf2 in the resting state
    Xia, Xian
    Liu, Xiaoyu
    Li, Tong
    Fang, Xianyang
    Chen, Zhucheng
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2016, 23 (08) : 722 - +
  • [22] Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2
    Kim, Jeong-Hoon
    Saraf, Anita
    Florens, Laurence
    Washburn, Michael
    Workman, Jerry L.
    GENES & DEVELOPMENT, 2010, 24 (24) : 2766 - 2771
  • [23] Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines
    Hopfner, Karl-Peter
    Gerhold, Christian-Benedikt
    Lakomek, Kristina
    Wollmann, Petra
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (02) : 225 - 233
  • [24] IDENTIFICATION AND CHARACTERIZATION OF DROSOPHILA RELATIVES OF THE YEAST TRANSCRIPTIONAL ACTIVATOR SNF2/SWI2
    ELFRING, LK
    DEURING, R
    MCCALLUM, CM
    PETERSON, CL
    TAMKUN, JW
    MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (04) : 2225 - 2234
  • [25] X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA
    Dürr, H
    Körner, C
    Müller, M
    Hickmann, V
    Hopfner, KP
    CELL, 2005, 121 (03) : 363 - 373
  • [26] Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes
    Mohrmann, L
    Verrijzer, CP
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2005, 1681 (2-3): : 59 - 73
  • [27] SNF2/SWI2 (A PUTATIVE HELICASE), SNF5, AND SNF6 PROTEINS FACILITATE TRANSCRIPTIONAL ACTIVATION AND ARE IMPLICATED IN CHROMATIN REMODELING
    LAURENT, BC
    TREICH, I
    CARLSON, M
    MOLECULAR BIOLOGY OF THE CELL, 1992, 3 : A96 - A96
  • [28] EVIDENCE THAT SNF2/SWI2 AND SNF5 ACTIVATE TRANSCRIPTION IN YEAST BY ALTERING CHROMATIN STRUCTURE
    HIRSCHHORN, JN
    BROWN, SA
    CLARK, CD
    WINSTON, F
    GENES & DEVELOPMENT, 1992, 6 (12A) : 2288 - 2298
  • [29] SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production
    Wang, Zhiye
    Ma, Zeyang
    Castillo-Gonzalez, Claudia
    Sun, Di
    Li, Yanjun
    Yu, Bin
    Zhao, Baoyu
    Li, Pingwei
    Zhang, Xiuren
    NATURE, 2018, 557 (7706) : 516 - +
  • [30] SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production
    Zhiye Wang
    Zeyang Ma
    Claudia Castillo-González
    Di Sun
    Yanjun Li
    Bin Yu
    Baoyu Zhao
    Pingwei Li
    Xiuren Zhang
    Nature, 2018, 557 : 516 - 521