Mean-field limit of a particle approximation of the one-dimensional parabolic-parabolic Keller-Segel model without smoothing

被引:6
作者
Jabir, Jean-Francois [1 ]
Talay, Denis [2 ]
Tomasevic, Milica [3 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Shabolovka 28-11, Moscow, Russia
[2] Inria Sophia Antipolis, 2004 Route Lucioles, F-06902 Valbonne, France
[3] Univ Cote dAzur, Campus Valrose,Batiment M,28 Ave Valrose, F-06108 Nice 2, France
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2018年 / 23卷
关键词
chemotaxis model; interacting particle system; singular McKean-Vlasov SDE; EXISTENCE;
D O I
10.1214/18-ECP183
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we prove the well-posedness of a singularly interacting stochastic particle system and we establish propagation of chaos result towards the one-dimensional parabolic-parabolic Keller-Segel model.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1991, Graduate Texts in Mathematics
[2]  
Bossy M, 1996, ANN APPL PROBAB, V6, P818
[3]   Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type [J].
Budhiraja, Amarjit ;
Fan, Wai-Tong .
ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
[4]  
Cattiaux P, 2016, ALEA-LAT AM J PROBAB, V13, P447
[5]   Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane [J].
Corrias, L. ;
Escobedo, M. ;
Matos, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1840-1878
[6]   STOCHASTIC PARTICLE APPROXIMATION OF THE KELLER-SEGEL EQUATION AND TWO-DIMENSIONAL GENERALIZATION OF BESSEL PROCESSES [J].
Fournier, Nicolas ;
Jourdain, Benjamin .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (05) :2807-2861
[7]   Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System [J].
Haskovec, Jan ;
Schmeiser, Christian .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) :940-960
[8]   Strong solutions of stochastic equations with singular time dependent drift [J].
Krylov, NV ;
Röckner, M .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (02) :154-196
[9]   PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic [J].
Perthame B. .
Applications of Mathematics, 2004, 49 (6) :539-564
[10]   SCHODINGER SEMIGROUPS [J].
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :447-526