Riemann-Hilbert theory without local parametrix problems: Applications to orthogonal polynomials

被引:2
作者
Piorkowski, Mateusz [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Riemann-Hilbert theory; Orthogonal polynomials; Random matrices; LEVEL-SPACING DISTRIBUTIONS; STEEPEST DESCENT METHOD; UNIVERSALITY LIMITS; STRONG ASYMPTOTICS; BULK UNIVERSALITY; RANDOM MATRICES; TODA LATTICE; SPECTRUM; EIGENVALUES; QUESTIONS;
D O I
10.1016/j.jmaa.2021.125495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study whether in the setting of the Deift-Zhou nonlinear steepest descent method one can avoid solving local parametrix problems, while still obtaining asymptotic results. We show that this can be done, provided an a priori estimate for the exact solution of the Riemann-Hilbert problem is known. This enables us to derive asymptotic results for orthogonal polynomials on [-1, 1] with a new class of weight functions. In these cases, the weight functions are too badly behaved to allow a reformulation of the local parametrix problem to a global one with constant jump matrices. Possible implications for edge universality in random matrix theory are also discussed. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:23
相关论文
共 61 条
[1]   Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent [J].
Andreiev, Kyrylo ;
Egorova, Iryna ;
Lange, Till Luc ;
Teschl, Gerald .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5371-5410
[2]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[3]   Convergent Interpolation to Cauchy Integrals over Analytic Arcs with Jacobi-Type Weights [J].
Baratchart, Laurent ;
Yattselev, Maxim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (22) :4211-4275
[4]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[5]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[6]   The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation [J].
Claeys, T. ;
Vanlessen, M. .
NONLINEARITY, 2007, 20 (05) :1163-1184
[7]   Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight [J].
Conway, Thomas Oliver ;
Deift, Percy .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[8]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO
[9]  
2-#
[10]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO