Challenges of Implementing Artificial Intelligence in Interventional Radiology

被引:12
作者
Mazaheri, Sina [1 ]
Loya, Mohammed F. [1 ]
Newsome, Janice [1 ,2 ]
Lungren, Mathew [3 ]
Gichoya, Judy Wawira [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Intervent Radiol, Sch Med, Atlanta, GA 30322 USA
[3] Stanford Univ, LPCH Pediat Intervent Radiol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
artificial intelligence; machine learning; interventional radiology; use cases; challenges; RADIATION-EXPOSURE; FLUOROSCOPY;
D O I
10.1055/s-0041-1736659
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) and deep learning (DL) remains a hot topic in medicine. DL is a subcategory of machine learning that takes advantage of multiple layers of interconnected neurons capable of analyzing immense amounts of data and "learning" patterns and offering predictions. It appears to be poised to fundamentally transform and help advance the field of diagnostic radiology, as heralded by numerous published use cases and number of FDA-cleared products. On the other hand, while multiple publications have touched upon many great hypothetical use cases of AI in interventional radiology (IR), the actual implementation of AI in IR clinical practice has been slow compared with the diagnostic world. In this article, we set out to examine a few challenges contributing to this scarcity of AI applications in IR, including inherent specialty challenges, regulatory hurdles, intellectual property, raising capital, and ethics. Owing to the complexities involved in implementing AI in IR, it is likely that IR will be one of the late beneficiaries of AI. In the meantime, it would be worthwhile to continuously engage in defining clinically relevant use cases and focus our limited resources on those that would benefit our patients the most.
引用
收藏
页码:554 / 559
页数:6
相关论文
共 49 条
[21]   Artificial Intelligence in Interventional Radiology: A Literature Review and Future Perspectives [J].
Iezzi, Roberto ;
Goldberg, S. N. ;
Merlino, B. ;
Posa, A. ;
Valentini, V. ;
Manfredi, R. .
JOURNAL OF ONCOLOGY, 2019, 2019
[22]   Prediction of 90Y Radioembolization Outcome from Pretherapeutic Factors with Random Survival Forests [J].
Ingrisch, Michael ;
Schoeppe, Franziska ;
Paprottka, Karolin ;
Fabritius, Matthias ;
Strobl, Frederik F. ;
De Toni, Enrico N. ;
Ilhan, Harun ;
Todica, Andrei ;
Michl, Marlies ;
Paprottka, Philipp Marius .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (05) :769-773
[23]  
Jin D., 2021, Artificial Intelligence in Medicine, P265, DOI 10.1016/B978-0-12-821259-2.00014-4
[24]  
Karstensen Lennart, 2020, Current Directions in Biomedical Engineering, V6, DOI 10.1515/cdbme-2020-0007
[25]   Machine Learning in Radiology: Applications Beyond Image Interpretation [J].
Lakhani, Paras ;
Prater, Adam B. ;
Hutson, R. Kent ;
Andriole, Kathy P. ;
Dreyer, Keith J. ;
Morey, Jose ;
Prevedello, Luciano M. ;
Clark, Toshi J. ;
Geis, J. Raymond ;
Itri, Jason N. ;
Hawkins, C. Matthew .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (02) :350-359
[26]   Enhancement of surgical hand gesture recognition using a capsule network for a contactless interface in the operating room [J].
Lee, A-reum ;
Cho, Yongwon ;
Jin, Seongho ;
Kim, Namkug .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 190
[27]   The Role of Artificial Intelligence in Interventional Oncology: A Primer [J].
Letzen, Brian ;
Wang, Clinton J. ;
Chapiro, Julius .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2019, 30 (01) :38-41
[28]   Artificial Intelligence in Plastic Surgery: Applications and Challenges [J].
Liang, Xuebing ;
Yang, Xiaoning ;
Yin, Shan ;
Malay, Sunitha ;
Chung, Kevin C. ;
Ma, Jiguang ;
Wang, Keming .
AESTHETIC PLASTIC SURGERY, 2021, 45 (02) :784-790
[29]  
Lizarralde M., GUIDELINE ARTIFICIAL
[30]   Machine Learning for the Interventional Radiologist [J].
Meek, Ryan D. ;
Lungren, Matthew P. ;
Gichoya, Judy W. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (04) :782-784