Accurate Segmentation of the Left Ventricle in Computed Tomography Images for Local Wall Thickness Assessment

被引:0
作者
Peters, J. [1 ]
Lessick, J. [2 ]
Kneser, R. [1 ]
Waechter, I. [2 ]
Vembar, M. [3 ]
Ecabert, O. [1 ]
Weese, J. [1 ]
机构
[1] Philips Res Europe Aachen, D-52066 Aachen, Germany
[2] Phillip Hlthcare, Adv Technol Ctr, IL-31004 Haifa, Israel
[3] Philips Hlthcare, CT Clin Sci, Cleveland, OH 44143 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I | 2010年 / 6361卷
关键词
cardiac wall thickness; papillary muscles; boundary detection; image segmentation; multi-slice computed tomography; CARDIAC CT; HEART; MODEL; DRIVEN;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, the fully automatic segmentation of the whole heart from three-dimensional (3D) CT or MR images has become feasible with mean surface accuracies in the order of 1mm. The assessment of local myocardial motion and wall thickness for different heart phases requires highly consistent delineation of the involved surfaces. Papillary muscles and misleading pericardial structures lead to challenges that are not easily resolved. This paper presents a framework to train boundary detection functions to explicitly avoid unwanted structures. A two-pass deformable adaptation process allows to reduce false boundary detections in the first pass while detecting most wanted boundaries in a second pass refinement. Cross-validation tests were performed for 67 cardiac datasets from 33 patients. Mean surface accuracies for the left ventricular endo- and epicardium are 0.76mm and 0.68mm, respectively. The percentage of local outliers with segmentation errors > 2mm is reduced by a factor of 3 as compared to a previously published approach. Wall thickness measurements in full 3D demonstrate that artifacts due to irregular endo- and epicardial contours are drastically reduced.
引用
收藏
页码:400 / +
页数:3
相关论文
共 14 条
[1]  
ABADI S, EUROPEAN J IN PRESS
[2]   GENERALIZING THE HOUGH TRANSFORM TO DETECT ARBITRARY SHAPES [J].
BALLARD, DH .
PATTERN RECOGNITION, 1981, 13 (02) :111-122
[3]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[4]  
COCHE E, EUROPEAN J IN PRESS
[5]   Automatic image-driven segmentation of the ventricles in cardiac cine MRI [J].
Cocosco, Chris A. ;
Niessen, Wiro J. ;
Netsch, Thomas ;
Vonken, Evert-jan P. A. ;
Lund, Gunnar ;
Stork, Alexander ;
Viergever, Max A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (02) :366-374
[6]   Automatic model-based segmentation of the heart in CT images [J].
Ecabert, Olivier ;
Peters, Jochen ;
Schramm, Hauke ;
Lorenz, Cristian ;
von Berg, Jens ;
Walker, Matthew J. ;
Vembar, Mani ;
Olszewski, Mark E. ;
Subramanyan, Krishna ;
Lavi, Guy ;
Weese, Juergen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (09) :1189-1201
[7]  
GHERSIN E, 2009, ACUTE CARDIAC CARE, V11, P47
[8]   Automatic contour propagation in cine cardiac magnetic resonance images [J].
Hautvast, Gilion ;
Lobregt, Steven ;
Breeuwer, Marcel ;
Gerritsen, Frans .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1472-1482
[9]  
Lehmann H, 2009, LECT NOTES COMPUT SC, V5528, P312, DOI 10.1007/978-3-642-01932-6_34
[10]   Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation [J].
Peters, J. ;
Ecabert, O. ;
Meyer, C. ;
Kneser, R. ;
Weese, J. .
MEDICAL IMAGE ANALYSIS, 2010, 14 (01) :70-84